
2D Trie for Fast Parsing

Xian Qian Qi Zhang Xuanjing Huang Lide Wu
{qianxian,qi zhang,xjhuang,ldwu}@fudan.edu.cn

School of Computer Science, Fudan University, Shanghai, 200433, P.R.China

Abstract

In practical applications, decoding speed
is very important. Modern structured
learning technique adopts template based
method to extract millions of features.
Complicated templates bring about abun-
dant features which lead to higher accu-
racy but more feature extraction time. We
propose Two Dimensional Trie (2D Trie),
a novel efficient feature indexing structure
which takes advantage of relationship be-
tween templates: feature strings generated
by a template are prefixes of the features
from its extended templates. We apply
our technique to Maximum Spanning Tree
dependency parsing. Experimental results
on Chinese Tree Bank corpus show that
our 2D Trie is about 5 times faster than
traditional Trie structure, making parsing
speed 4.3 times faster.1

1 Introduction

In practical applications, decoding speed is very
important. Modern structured learning technique
adopts template based method to generate mil-
lions of features. Such as shallow parsing (Sha
and Pereira, 2003), named entity recognition
(Kazama and Torisawa,), dependency parsing
(McDonald et al., 2005), etc.

The problem arises when the number of tem-
plates increases, more features generated, mak-
ing the extraction step time consuming. Espe-

1The Chinese dependency parser is available at
http://ctbparser.sourceforge.net/ A language indepen-
dent dependency parsing toolkit and source code is available
at http://crfparser.sourceforge.net/

Feature Generation

Template:
p .word+p .pos0 0

Feature:
lucky/ADJ

Index:
3228~3233

Feature
Retrieval

Parse Tree

Build lattice, inference etc.

Figure 1: Flow chart of dependency parsing.
p0.word, p0.pos denotes the word and POS tag
of parent node respectively. Indexes correspond
to the features conjoined with dependency types,
e.g., lucky/ADJ/OBJ, lucky/ADJ/NMOD, etc.

cially for maximum spanning tree (MST) depen-
dency parsing, since feature extraction requires
quadratic time even using a first order model. Ac-
cording to Bohnet’s report (Bohnet, 2009), a fast
feature extraction beside of a fast parsing algo-
rithm is important for the parsing and training
speed. He takes 3 measures for a 40X speedup,
despite the same inference algorithm. One impor-
tant measure is to store the feature vectors in file
to skip feature extraction, otherwise it will be the
bottleneck.

Now we quickly review the feature extraction
stage of structured learning. Typically, it consists
of 2 steps. First, features represented by strings
are generated using templates. Then a feature in-
dexing structure searches feature indexes to get
corresponding feature weights. Figure 1 shows
the flow chart of MST parsing, where p0.word,
p0.pos denote the word and POS tag of parent
node respectively.

We conduct a simple experiment to investi-

Step Feature Index Other Total
Generation Retrieval

Time 300.27 61.66 59.48 421.41

Table 1: Time spent of each step (seconds) of
MSTParser on CTB6 standard test data (2660 sen-
tences). Details of the hardware and corpus are
described in section 5

gate decoding time of MSTParser, a state-of-the-
art java implementation of dependency parsing 2.
Chinese Tree Bank 6 (CTB6) corpus (Palmer and
Xue, 2009) with standard train/development/test
split is used for evaluation. Experimental results
are shown in Table 1. The observation is that time
spent of inference is trivial compared with feature
extraction. Thus, speeding up feature extraction is
critical especially when large template set is used
for high accuracy.

General indexing structure such as Hash and
Trie does not consider the relationships between
templates, therefore they could not speed up fea-
ture generation, and are not completely efficient
for searching feature indexes. For example, fea-
ture string s1 generated by template “p0.word”
is prefix of feature s2 from template “p0.word +
c0.word” (word pair of parent and child), hence
index of s1 could be used for searching s2. Further
more, if s1 is not in the feature set, then s2 must be
absent, its generation can be skipped. This is still
correct if s1 is removed after feature selection, as
long as we use Trie structure.

We propose Two Dimensional Trie (2D Trie),
a novel efficient feature indexing structure which
takes advantage of relationship between tem-
plates. We apply our technique to Maximum
Spanning Tree dependency parsing. Experimental
results on CTB6 corpus show that our 2D Trie is
about 5 times faster than traditional Trie structure,
making parsing speed 4.3 times faster.

The paper is structured as follows: in section 2,
we describe template tree which represents rela-
tionship between templates; in section 3, we de-
scribe our new 2D Trie structure; in section 4, we
analyze the complexity of the proposed method
and general string indexing structures for parsing;

2http://sourceforge.net/projects/mstparser

Unit Meaning
p−i/pi the ith node left/right to parent node
c−i/ci the ith node left/right to child node
r−i/ri the ith node left/right to root node
n.word word of node n
n.pos POS tag of node n

n.length word length of node n
|l conjoin current feature with linear

distance between child node and
parent node

|d conjoin current feature with direc-
tion of dependency (left/right)

Table 2: Template units appearing in this paper

experimental results are shown in section 5; we
conclude the work in section 6.

2 Template tree

2.1 Formulation of template

A template is a set of template units which are
manually designed: T = {t1, . . . , tm}. For con-
venience, we use another formulation: T = t1 +
. . .+tm. All template units appearing in this paper
are described in Table 2, most of them are widely
used. For example, “T = p0.word + c0.word|l ”
denotes the word pair of parent and child nodes,
conjoined with their distance.

2.2 Template tree

In the rest of the paper, for simplicity, let si be a
feature string generated by template Ti.

We define the relationship between templates:
T1 is the ancestor of T2 if and only if T1 ⊂ T2,
and T2 is called the descendant of T1. Recall that,
feature string s1 is prefix of feature s2. Suppose
T3 ⊂ T1 ⊂ T2, obviously, the most efficient way
to look up indexes of s1, s2, s3 is to search s3 first,
then use its index id3 to search s1, and finally use
id1 to search s2. Hence the relationship between
T2 and T3 can be neglected.

Therefore we define direct ancestor of T1: T2

is a direct ancestor of T1 if T2 ⊂ T1, and there is
no template T ′ such that T2 ⊂ T ′ ⊂ T1. Corre-
spondingly, T1 is called the direct descendant of
T2.

p .word0

p .word + p pos0 0.

root

p .word0

root

p .pos0

p .pos0 p .pos0

Figure 2: Left graph shows template graph for
T1 =p0.word, T2 =p0.pos , T3 =p0.word +
p0.pos. Right graph shows the corresponding tem-
plate tree, where each vertex saves the subset of
template units that do not belong to its father

Template graph G = (V, E) is a directed graph
that represents the relationship between templates,
where V = {T1, . . . , Tn} is the template set, E =
{e1, . . . , eN} is the edge set. Edge from Ti to Tj

exists, if and only if Ti is the direct ancestor of
Tj . For templates having no ancestor, we add an
empty template as their common direct ancestor,
which is also the root of the graph.

The left part of Figure 2 shows a template
graph for templates T1 =p0.word, T2 =p0.pos ,
T3 =p0.word + p0.pos. In this example, T3 has 2
direct ancestors, but in fact s3 has only one prefix
which depends on the order of template units in
generation step. If s3 = s1 + s2, then its prefix is
s1, otherwise its prefix is s2. In this paper, we sim-
ply use the breadth-first tree of the graph for dis-
ambiguation, which is called template tree. The
only direct ancestor T1 of T2 in the tree is called
father of T2, and T2 is a child of T1. The right
part of Figure 2 shows the corresponding template
tree, where each vertex saves the subset of tem-
plate units that do not belong to its father.

2.3 Virtual vertex
Consider the template tree in the left part of Fig-
ure 3, black vertex and gray vertex are partially
overlapped, their intersection is p0.word, if string
s from template T =p0.word is absent in feature
set, then both nodes can be neglected. For effi-
ciently pruning candidate templates, each vertex
in template tree is restricted to have exactly one
template unit (except root). Another important
reason for such restriction will be given in the next
section.

root

p .word+p .word

+p .word
-1 0

1

p .word

+p pos
0

0.

c .word

+c pos
0

0.

root

p .word0

p .pos0

p .word-1

p .word1

c .word0

c .pos0

Figure 3: Templates that are partially overlapped:
Tblack ∩ Tgray =p0.word, virtual vertexes shown
in dashed circle are created to extract the common
unit

root

p .word0

p .pos0

parse tag

VV NN...

.........

Level 0

Level 1

Level 2 VV ...

Figure 4: A node in 2D Trie is string(word or pos
tag), whereas a node represents a character in an
ordinary Trie

To this end, virtual vertexes are created for
multi-unit vertexes. For efficient pruning, the
new virtual vertex should extract the most com-
mon template unit. A natural goal is to minimize
the virtual vertex number. Here we use a simple
greedy strategy, for the vertexes sharing a com-
mon father, the most frequent common unit is ex-
tracted as new vertex. Virtual vertexes are itera-
tively created in this way until all vertexes have
one unit. The final template tree is shown in the
right part of Figure 3, newly created virtual ver-
texes are shown in dashed circle.

3 2D Trie

3.1 Single template case

Trie stores strings over a fixed alphabet, in our
case, feature strings are stored over several alpha-
bets, such as word list, POS tag list, etc. which are
extracted from training corpus.

To illustrate 2D Trie clearly, we first consider a
simple case, where only one template used. The

He

had

been

a

sales

and

marketing

executive

with

Chrysler

for

20

years

PRP

VBD

VBN

DT

NNS

CC

NN

NN

IN

NNP

IN

CD

NNS

2648

2731

1121

0411

5064

0631

3374

1923

6023

1560

2203

0056

6778

21

27

28

04

13

01

12

12

06

13

06

02

14

Figure 5: Look up indexes of words and POS tags
beforehand.

template tree degenerates to a sequence, we could
use a Trie like structure for feature indexing, the
only difference from traditional Trie is that nodes
at different levels could have different alphabets.
One example is shown in Figure 4. There are 3
feature strings from template “p0.word + p0.pos”:
{parse/VV, tag/NN, tag/VV}. Alphabets at level
1 and level 2 are the word set, POS tag set re-
spectively, which are determined by correspond-
ing template vertexes.

As mentioned before, each vertex in template
tree has exactly one template unit, therefore, at
each level, we look up an index of a word or POS
tag in sentence, not their combinations. Hence
the number of alphabets is limited, and all the
indexes could be searched beforehand for reuse.
For example, suppose the template is “r0.word +
r1.word”, index of the i + 1th word is required for
feature extraction for the ith and i+1th words. As
shown in Figure 5, the token table is converted to
an index table, these index values stand for unique
identifiers of original strings.

3.2 General case
Generally, for vertex in template tree with K chil-
dren, children of corresponding Trie node are ar-
ranged in a matrix of K rows and L columns, L
is the size of corresponding alphabet. If the vertex
is not virtual, i.e., it generates features, one more
row is added at the bottom to store feature indexes.
Figure 6 shows the 2D Trie for a general template
tree.

3.3 Feature extraction
When extracting features for a pair of nodes in a
sentence, template tree and 2D Trie are visited in

been

...

...

...

...

...

...

VBN

p .word+p .pos

→been/VBN
0 0...

...

...

...

p .word→been0... ...

root

root

p .word0

p .pos0 c .word0

had

...

...

...

p .word→had0 ...

VBD

p .word+p .pos

→had/VBD
0 0...

...

...

...

He

p .word+c .word

had/he
0 0

→
...

...

nmod vmodobj sub

Feature index array

-1 -13327 2510

nmod vmodobj sub

-1 7821-1 -1

...

...

...

...

...

...

...

... been

p .word+c .word

→had/been
0 0 ...

...

invalid

Figure 6: 2D trie for a general template tree.
Dashed boxes are keys of columns, which are not
stored in the structure

breath first traversal order. Each time, an alpha-
bet and a token index j from index table are se-
lected according to current vertex. For example,
POS tag set and the index of the POS tag of par-
ent node are selected as alphabet and token index
respectively for vertex “p0.pos”. Then children in
the jth column of the Trie node are visited, valid
children and corresponding template vertexes are
saved for further retrieval or generate feature in-
dexes if the child is at the bottom and current Trie
node is not virtual. Two queues are maintained to
save the valid children and Trie nodes. Details of
feature extraction algorithm are described in Al-
gorithm 1.

3.4 Implementation

We use Double Array Trie structure (Aoe, 1989)
for implementation. Since children of 2D Trie
node are arranged in a matrix, not an array, so each
element of the base array has a list of bases, not
one base in standard structure. For children that
store features, corresponding bases are feature in-
dexes. One example is shown in Figure 7. The
root node has 3 bases that point to three rows of

been

...

...

...

...

...

...

p .word→been0... ...

root

had

...

...

...

p .word→had0 ...

nmod vmodobj sub

Feature index array

-1 -13327 2510

nmod vmodobj sub

-1 7821-1 -1

...

...

...

...

...

...

invalid

base1

base2

base3

base1 base4

...

...

F

...

...

...

P

...

...

...

A

...

B

...

C

...

...

...

...

...

A

...

B

...

C

...

...

...

...

...

base

base

base2 base3

Figure 7: Difference between ordinary base array (left) and base array for 2D Trie (right)

Algorithm 1 Feature extraction using 2D Trie
Input: 2D Trie that stores features, template
tree, template graph, a table storing token in-
dexes, parent and child positions
Output: Feature index set S of dependency
from parent to child.
Create template vertex queue Q1 and Trie
node queue Q2. Push roots of template tree
and Trie into Q1, Q2 respectively. S = ∅
while Q1 is not empty, do

Pop a template vertex T from Q1 and a Trie
node N from Q2. Get token index j from
index table according to T .
for i = 1 to child number of T

if child of N at row i column j is valid,
push it into Q2 and push the ith child
of T into Q1.

else
remove decedents of ith child of T
from template tree

end if
end for
if T is not virtual and the last child of N in
column j is valid

Enumerate dependency types, add
valid feature indexes to S

end if
end while
Return S.

the child matrix of vertex “p0.word” respectively.
Number of bases in each element need not to be
stored, since it can be obtained from template ver-
tex in extraction procedure.

Building algorithm is similarly to Double Array
Trie, when inserting a Trie node, each row of the
child matrix is independently insert into base and
check arrays using brute force strategy. The inser-
tion repeats recursively until all features stored.

4 Complexity analysis

Let
|T | = number of templates
|t| = number of template units
|V | = number of vertexes in template tree
|F | = number of features
|f | = average length of feature strings
The procedure of 2D Trie for feature extrac-

tion consists of 2 steps: tokens in string table are
mapped to their indexes, then Algorithm 1 is car-
ried out for all node pairs of sentence. In the first
step, we use double array Trie for efficient map-
ping. In fact, time spent is trivial compared with
step 2 even by binary search. The main time spent
of Algorithm 1 is the traversal of the whole tem-
plate tree, in the worst case, no vertexes removed,
so the time complexity for each word pair is |V |.

For other indexing structures, feature genera-
tion is a primary step of retrieval. For each word
pair, |t| template units are processed, including
concatenations of tokens and split symbols (split
tokens in feature strings), boundary check (e.g,
p−1.word is out of boundary for beginning node

Structure Generation Retrieval
2D Trie |V |

Hash / Trie |t| |f ||T |
Binary Search |t| |T | log |F |

Table 3: Time complexity of different indexing
structures.

of sentence). Notice that, time spent of each pro-
cess varies on the length of tokens.

For feature string s with length |s|, if perfect
hashing technique is adopted for index retrieval, it
takes |s| calculations to get hash value and a string
comparison to check the string at the calculated
position. So the time complexity is proportional to
|s|, which is the same as Trie. Hence the total time
for a word pair is |f ||T |. If binary search is used
instead, log |F | string comparisons are required,
complexity for a word pair is |T | log |F |.

Time complexity of these structures is summa-
rized in Table 3.

5 Experiments

5.1 Experimental settings

We use Chinese Tree Bank 6.0 corpus for evalua-
tion. The constituency structures are converted to
dependency trees by Penn2Malt 3 toolkit and the
standard training/development/test split is used.
257 sentences that failed in the conversion were
removed, yielding 23316 sentences for training,
2060 sentences for development and 2660 sen-
tences for testing respectively.

Since all the dependency trees are projective,
a first order projective MST parser is naturally
adopted. Previous studies show that a second
order model achieve higher performance, in this
case, complexities of decoding and feature extrac-
tion are l times of the first order model if second
order features are based on word triples. There-
fore the effect of the proposed method are insen-
sitive to order of model, so we only focus on the
first order model. Online Passive Aggressive al-
gorithm (Crammer et al., 2006) is used for fast
training. The quality of the parser is measured by
the labeled attachment score (LAS).

3http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html

Group IDs #Temp. #Vert. #Feat. LAS
1 1-2 72 91 3.23M 79.55%
2 1-3 128 155 10.4M 81.38%
3 1-4 240 275 25.0M 81.97%
4 1-5 332 367 34.8M 82.44%

Table 5: Parsing accuracy and number of tem-
plates, vertexes in template tree, features in decod-
ing stage (zero weighted features are excluded) of
each group.

We compare the proposed structure with Trie
and binary search. For easy comparison, all fea-
ture indexing structures and the parser are imple-
mented with C++. All experiments are carried out
on a 64bit linux platform (CPU: Intel(R) Xeon(R)
E5405, 2.00GHz, Memory: 16G Bytes). For each
template set, we run the parser five times on test
data and the averaged parsing time is reported.

5.2 Parsing speed comparison
To investigate the scalability of our method, rich
templates are designed to generate large feature
sets, as shown in Table 4. All templates are orga-
nized into 4 groups. Each row of Table 5 shows
the details of a group, including parsing accu-
racy and number of templates, vertexes in tem-
plate tree, and features in decoding stage (zero
weighted features are excluded).

There is a rough trend that parsing accuracy
increases as more templates used. Though such
trend is not completely correct, the clear conclu-
sion is that, abundant templates are necessary for
accurate parsing.

Results of parsing time comparison are shown
in Table 6. We can see that though time com-
plexity of dynamic programming is cubic, pars-
ing time of all systems is consistently dominated
by feature extraction. When efficient indexing
structure adopted, i.e, Trie or Hash, time index re-
trieval is greatly reduced, about 4-5 times faster
than binary search. However, general structures
search features independently, their results could
not guide feature generation. Hence, feature gen-
eration is still time consuming. The reason is that
processing each template unit includes a series of
steps, much slower than one integer comparison
in Trie search.

On the other hand, 2D Trie greatly reduces the

ID Templates
1 pi.word pi.pos pi.word+pi.pos

ci.word ci.pos ci.word+ci.pos (|i| ≤ 2)
pi.length pi.length+pi.pos
ci.length ci.length+ci.pos (|i| ≤ 1)
p0.length+c0.length|ld p0.length+c0.length+c0.pos|ld p0.length+p0.pos+c0.length|ld
p0.length+p0.pos+c0.pos|ld p0.pos+c0.length+c0.pos|ld p0.length+p0.pos+c0.length+c0.pos|ld
pi.length+pj .length+ck.length+cm.length|ld (|i|+ |j|+ |k|+ |m| ≤ 2)
r0.word r−1.word+r0.word r0.word+r1.word
r0.pos r−1.pos+r0.pos r0.pos+r1.pos

2 pi.pos+cj .pos|d pi.word+cj .word|d pi.pos+cj .word+cj .pos|d
pi.word+pi.pos+cj .pos|d pi.word+pi.pos+cj .word|d pi.word+cj .word+cj .pos|d
pi.word+pi.pos+cj .word+cj .pos|d (|i|+ |j| = 0)

Conjoin templates in the row above with |l
3 Similar with 2 |i|+ |j| = 1
4 Similar with 2 |i|+ |j| = 2
5 pi.word + pj .word + ck.word|d pi.word + cj .word + ck.word|d

pi.pos + pj .pos + ck.pos|d pi.pos + cj .pos + ck.pos|d (|i|+ |j|+ |k| ≤ 2)
Conjoin templates in the row above with |l

pi.word + pj .word + pk.word + cm.word|d pi.word + pj .word + ck.word + cm.word|d
pi.word + cj .word + ck.word + cm.word|d
pi.pos + pj .pos + pk.pos + cm.pos|d pi.pos + pj .pos + ck.pos + cm.pos|d
pi.pos + cj .pos + ck.pos + cm.pos|d (|i|+ |j|+ |k|+ |m| ≤ 2)

Conjoin templates in the row above with |l

Table 4: Templates used in Chinese dependency parsing.

Group Structure Total Generation Retrieval Other Memory sent/sec
Trie 87.39 63.67 10.33 13.39 402M 30.44

1 Binary Search 127.84 62.68 51.52 13.64 340M 20.81
2D Trie 39.74 26.29 13.45 700M 66.94

Trie 264.21 205.19 39.74 19.28 1.3G 10.07
2 Binary Search 430.23 212.50 198.72 19.01 1.2G 6.18

2D Trie 72.81 53.95 18.86 2.5G 36.53
Trie 620.29 486.40 105.96 27.93 3.2G 4.29

3 Binary Search 982.41 484.62 469.44 28.35 2.9G 2.71
2D Trie 146.83 119.56 27.27 5.9G 18.12

Trie 854.04 677.32 139.70 37.02 4.9G 3.11
4 Binary Search 1328.49 680.36 609.70 38.43 4.1G 2.00

2D Trie 198.31 160.38 37.93 8.6G 13.41

Table 6: Parsing time of 2660 sentences (seconds) on a 64bit linux platform (CPU: Intel(R) Xeon(R)
E5405, 2.00GHz, Memory: 16G Bytes). Title “Generation” and “Retrieval” are short for feature gen-
eration and feature index retrieval steps respectively.

Group Trie 2D Trie
1 999, 905, 192 425, 994, 232
2 3, 140, 497, 344 605, 173, 980
3 7, 808, 018, 972 970, 346, 188
4 11, 516, 171, 430 1, 180, 082, 473

Table 7: Numbers of checking check values of
two Tries

number of feature generations by pruning the tem-
plate graph. In fact, no string concatenation oc-
curs when using 2D Trie, since all tokens are con-
verted to indexes beforehand. The improvement
is significant, 2D Trie is about 5 times faster than
Trie on the largest feature set, yielding 13.4 sen-
tences per second parsing speed, about 4.3 times
faster.

The reason why 2D Trie is slower than Trie re-
trieval is the similar with feature generation, many
other computations are required beside search,
such as push and pop of two queues, boundary
check, etc. Table 7 shows the numbers of check-
ing check values of two structures, which are the-
oretically analyzed in Table 3. We could see
that 2D Trie requires much less checks than Trie
when large feature set used, hence is more effi-
cient without other computations.

5.3 Comparison against state-of-the-art

Recent works on dependency parsing speedup
mainly focus on inference, such as expected
linear time non-projective dependency parsing
(Nivre, 2009), integer linear programming (ILP)
for higher order non-projective parsing (Martins
et al., 2009). They achieve 0.632 seconds per sen-
tence over several languages. On the other hand,
Goldberg and Elhadad proposed splitSVM (Gold-
berg and Elhadad, 2008) for fast low-degree poly-
nomial kernel classifiers, and applied it to transi-
tion based parsing (Nivre, 2003). They achieve
53 sentences per second parsing speed on En-
glish corpus, which is faster than our results, since
transition based parsing is linear time, while for
graph based method, complexity of feature ex-
traction is quadratic. Xavier Lluı́s et al. (Lluı́s
et al., 2009) achieve 8.07 seconds per sentence
speed on CoNLL09 (Hajič et al., 2009) Chinese
Tree Bank test data with a second order graphic
model. Bernd Bohnet (Bohnet, 2009) also uses

System sec/sent
(Martins et al., 2009) 0.63

(Goldberg and Elhadad, 2008) 0.019
(Lluı́s et al., 2009) 8.07

(Bohnet, 2009) 15.3
(Galley and Manning, 2009) 15.6

ours group1 0.015
ours group2 0.027
ours group3 0.055
ours group4 0.075

Table 8: Comparison against state of the art, di-
rect comparison of parsing time is difficult due to
the differences in data, models, hardware and im-
plementations.

second order model, and achieves 610 minutes on
CoNLL09 English data (2399 sentences, 15.3 sec-
onds per sentence). Although direct comparison
of parsing time is difficult due to the differences
in data, models, hardware and implementations,
these results demonstrate that our structure can
actually result in a very fast implementation of a
parser. Moreover, our work is orthogonal to oth-
ers, and could be used for other learning tasks.

6 Conclusion

We proposed 2D Trie, a novel feature indexing
structure for fast template based feature extrac-
tion. The key insight is that feature strings gener-
ated by a template are prefixes of the features from
its extended templates, hence indexes of searched
features can be reused for further extraction. We
applied 2D Trie to dependency parsing task, ex-
perimental results on CTB corpus demonstrate the
advantages of our technique, about 5 times faster
than traditional Trie structure, yielding parsing
speed 4.3 times faster, while using only 1.7 times
as much memory.

Acknowledgement The author wishes to thank
the anonymous reviewers for their helpful com-
ments. This work was partially funded by
973 Program (2010CB327906), The National
High Technology Research and Development Pro-
gram of China (2009AA01A346), Shanghai Lead-
ing Academic Discipline Project (B114), Doc-
toral Fund of Ministry of Education of China
(200802460066), and Shanghai Science and Tech-
nology Development Funds (08511500302).

References
Aoe, Jun’ichi. 1989. An efficient digital

search algorithm by using a double-array struc-
ture. IEEE Transactions on software andengineer-
ing, 15(9):1066–1077.

Bohnet, Bernd. 2009. Efficient parsing of syntactic
and semantic dependency structures. In Proceed-
ings of the Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009): Shared
Task, pages 67–72, Boulder, Colorado, June. Asso-
ciation for Computational Linguistics.

Crammer, Koby, Joseph Keshet, Shai Shalev-Shwartz,
and Yoram Singer. 2006. Online passive-aggressive
algorithms. In JMLR 2006.

Galley, Michel and Christopher D. Manning. 2009.
Quadratic-time dependency parsing for machine
translation. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 773–781,
Suntec, Singapore, August. Association for Compu-
tational Linguistics.

Goldberg, Yoav and Michael Elhadad. 2008. splitsvm:
Fast, space-efficient, non-heuristic, polynomial ker-
nel computation for nlp applications. In Proceed-
ings of ACL-08: HLT, Short Papers, pages 237–240,
Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Hajič, Jan, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of the
Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared Task,
pages 1–18, Boulder, Colorado, June. Association
for Computational Linguistics.

Kazama, Jun’ichi and Kentaro Torisawa. A new per-
ceptron algorithm for sequence labeling with non-
local features. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 315–324.

Lluı́s, Xavier, Stefan Bott, and Lluı́s Màrquez. 2009.
A second-order joint eisner model for syntactic and
semantic dependency parsing. In Proceedings of the
Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared Task,
pages 79–84, Boulder, Colorado, June. Association
for Computational Linguistics.

Martins, Andre, Noah Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 342–
350, Suntec, Singapore, August. Association for
Computational Linguistics.

McDonald, Ryan, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics, pages 91–97. Association for Computa-
tional Linguistics.

Nivre, Joakim. 2003. An efficient algorithm for
projective dependency parsing. In Proceedings of
the 11th International Conference on Parsing Tech-
niques, pages 149–160.

Nivre, Joakim. 2009. Non-projective dependency
parsing in expected linear time. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 351–359, Suntec, Singapore, August. Asso-
ciation for Computational Linguistics.

Palmer, Martha and Nianwen Xue. 2009. Adding se-
mantic roles to the Chinese Treebank. Natural Lan-
guage Engineering, 15(1):143–172.

Sha, Fei and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings
of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 134–141,
May.

