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Abstract

Recently, many works have tried to augment
the performance of Chinese named entity
recognition (NER) using word lexicons. As
a representative, Lattice-LSTM (Zhang and
Yang, 2018) has achieved new benchmark
results on several public Chinese NER
datasets. However, Lattice-LSTM has a
complex model architecture. This limits its
application in many industrial areas where
real-time NER responses are needed.

In this work, we propose a simple but effective
method for incorporating the word lexicon into
the character representations. This method
avoids designing a complicated sequence mod-
eling architecture, and for any neural NER
model, it requires only subtle adjustment of the
character representation layer to introduce the
lexicon information. Experimental studies on
four benchmark Chinese NER datasets show
that our method achieves an inference speed
up to 6.15 times faster than those of state-of-
the-art methods, along with a better perfor-
mance. The experimental results also show
that the proposed method can be easily incor-
porated with pre-trained models like BERT. 1

1 Introduction

Named Entity Recognition (NER) is concerned
with the identification of named entities, such
as persons, locations, and organizations, in un-
structured text. NER plays an important role
in many downstream tasks, including knowledge
base construction (Riedel et al., 2013), information
retrieval (Chen et al., 2015), and question answer-
ing (Diefenbach et al., 2018). In languages where
words are naturally separated (e.g., English), NER
has been conventionally formulated as a sequence

∗Equal contribution.
1The source code of this paper is publicly

available at https://github.com/v-mipeng/
LexiconAugmentedNER.

labeling problem, and the state-of-the-art results
have been achieved using neural-network-based
models (Huang et al., 2015; Chiu and Nichols,
2016; Liu et al., 2018).

Compared with NER in English, Chinese NER
is more difficult since sentences in Chinese are not
naturally segmented. Thus, a common practice for
Chinese NER is to first perform word segmentation
using an existing CWS system and then apply a
word-level sequence labeling model to the seg-
mented sentence (Yang et al., 2016; He and Sun,
2017b). However, it is inevitable that the CWS
system will incorrectly segment query sentences.
This will result in errors in the detection of entity
boundary and the prediction of entity category
in NER. Therefore, some approaches resort to
performing Chinese NER directly at the character
level, which has been empirically proven to be
effective (He and Wang, 2008; Liu et al., 2010; Li
et al., 2014; Liu et al., 2019; Sui et al., 2019; Gui
et al., 2019b; Ding et al., 2019).

A drawback of the purely character-based NER
method is that the word information is not fully ex-
ploited. With this consideration, Zhang and Yang,
(2018) proposed Lattice-LSTM for incorporating
word lexicons into the character-based NER model.
Moreover, rather than heuristically choosing a word
for the character when it matches multiple words
in the lexicon, the authors proposed to preserve
all words that match the character, leaving the
subsequent NER model to determine which word
to apply. To realize this idea, they introduced an
elaborate modification to the sequence modeling
layer of the LSTM-CRF model (Huang et al., 2015).
Experimental studies on four Chinese NER datasets
have verified the effectiveness of Lattice-LSTM.

However, the model architecture of Lattice-
LSTM is quite complicated. In order to introduce
lexicon information, Lattice-LSTM adds several
additional edges between nonadjacent characters

https://github.com/v-mipeng/LexiconAugmentedNER
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in the input sequence, which significantly slows
its training and inference speeds. In addition,
it is difficult to transfer the structure of Lattice-
LSTM to other neural-network architectures (e.g.,
convolutional neural networks and transformers)
that may be more suitable for some specific tasks.

In this work, we propose a simpler method to
realize the idea of Lattice-LSTM, i.e., incorporat-
ing all the matched words for each character to a
character-based NER model. The first principle
of our model design is to achieve a fast inference
speed. To this end, we propose to encode lexicon
information in the character representations, and
we design the encoding scheme to preserve as
much of the lexicon matching results as possible.
Compared with Lattice-LSTM, our method avoids
the need for a complicated model architecture, is
easier to implement, and can be quickly adapted to
any appropriate neural NER model by adjusting
the character representation layer. In addition,
ablation studies show the superiority of our method
in incorporating more complete and distinct lexicon
information, as well as introducing a more effective
word-weighting strategy. The contributions of this
work can be summarized as follows:

• We propose a simple but effective method for
incorporating word lexicons into the character
representations for Chinese NER.

• The proposed method is transferable to differ-
ent sequence-labeling architectures and can be
easily incorporated with pre-trained models
like BERT (Devlin et al., 2018).

We performed experiments on four public Chinese
NER datasets. The experimental results show that
when implementing the sequence modeling layer
with a single-layer Bi-LSTM, our method achieves
considerable improvements over the state-of-the-
art methods in both inference speed and sequence
labeling performance.

2 Background

In this section, we introduce several previous works
that influenced our work, including the Softword
technique and Lattice-LSTM.

2.1 Softword Feature

The Softword technique was originally used for
incorporating word segmentation information into
downstream tasks (Zhao and Kit, 2008; Peng and

Dredze, 2016). It augments the character repre-
sentation with the embedding of its corresponding
segmentation label:

xcj ← [xcj ; e
seg(seg(cj))]. (1)

Here, seg(cj) ∈ Yseg denotes the segmentation
label of the character cj predicted by the word
segmentor, eseg denotes the segmentation label
embedding lookup table, and typically Yseg =
{B,M,E,S}.

However, gold segmentation is not provided in
most datasets, and segmentation results obtained
by a segmenter can be incorrect. Therefore,
segmentation errors will inevitably be introduced
through this approach.

2.2 Lattice-LSTM
Lattice-LSTM designs to incorporate lexicon in-
formation into the character-based neural NER
model. To achieve this purpose, lexicon matching
is first performed on the input sentence. If the sub-
sequence {ci, · · · , cj} of the sentence matches a
word in the lexicon for i < j, a directed edge is
added from ci to cj . All lexicon matching results
related to a character are preserved by allowing
the character to be connected with multiple other
characters. Intrinsically, this practice converts the
input form of a sentence from a chain into a graph.

In a normal LSTM layer, the hidden state hi and
the memory cell ci of each time step is updated by:

hi, ci = f(hj−1, cj−1, x
c
j), (2)

However, in order to model the graph-based input,
Lattice-LSTM introduces an elaborate modification
to the normal LSTM. Specifically, let s<∗,j>
denote the list of sub-sequences of sentence s that
match the lexicon and end with cj , h<∗,j> denote
the corresponding hidden state list {hi,∀s<i,j> ∈
s<∗,j>}, and c<∗,j> denote the corresponding
memory cell list {ci,∀s<i,j> ∈ s<∗,j>}. In
Lattice-LSTM, the hidden state hj and memory
cell cj of cj are now updated as follows:

hj , cj = f(hj−1, cj−1, x
c
j , s<∗,j>, h<∗,j>, c<∗,j>),

(3)
where f is a simplified representation of the
function used by Lattice-LSTM to perform memory
update.

From our perspective, there are two main advan-
tages to Lattice-LSTM. First, it preserves all the
possible lexicon matching results that are related to



a character, which helps avoid the error propagation
problem introduced by heuristically choosing a
single matching result for each character. Second,
it introduces pre-trained word embeddings to the
system, which greatly enhances its performance.

However, efficiency problems exist in Lattice-
LSTM. Compared with normal LSTM, Lattice-
LSTM needs to additionally model s<∗,j>, h<∗,j>,
and c<∗,j> for memory update, which slows the
training and inference speeds. Additionally, due to
the complicated implementation of f , it is difficult
for Lattice-LSTM to process multiple sentences
in parallel (in the published implementation of
Lattice-LSTM, the batch size was set to 1). These
problems limit its application in some industrial
areas where real-time NER responses are needed.

3 Approach

In this work, we sought to retain the merits of
Lattice-LSTM while overcoming its drawbacks. To
this end, we propose a novel method in which lexi-
con information is introduced by simply adjusting
the character representation layer of an NER model.
We refer to this method as SoftLexicon. As shown
in Figure 1, the overall architecture of the proposed
method is as follows. First, each character of the
input sequence is mapped into a dense vector. Next,
the SoftLexicon feature is constructed and added
to the representation of each character. Then, these
augmented character representations are put into
the sequence modeling layer and the CRF layer to
obtain the final predictions.

3.1 Character Representation Layer
For a character-based Chinese NER model, the
input sentence is seen as a character sequence s =
{c1, c2, · · · , cn} ∈ Vc, where Vc is the character
vocabulary. Each character ci is represented using
a dense vector (embedding):

xci = e
c(ci), (4)

where ec denotes the character embedding lookup
table.

Char + bichar. In addition, Zhang and Yang,
(2018) has proved that character bigrams are useful
for representing characters, especially for those
methods not using word information. Therefore,
it is common to augment the character representa-
tions with bigram embeddings:

xci = [ec(ci); e
b(ci, ci+1)], (5)
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Figure 1: The overall architecture of the proposed
method.

where eb denotes the bigram embedding lookup
table.

3.2 Incorporating Lexicon Information
The problem with the purely character-based NER
model is that it fails to exploit word information.
To address this issue, we proposed two methods, as
described below, to introduce the word information
into the character representations. In the following,
for any input sequence s = {c1, c2, · · · , cn}, wi,j

denotes its sub-sequence {ci, ci+1, · · · , cj}.

ExSoftword Feature
The first conducted method is an intuitive exten-
sion of the Softword method, called ExSoftword.
Instead of choosing one segmentation result for
each character, it proposes to retain all possible
segmentation results obtained using the lexicon:

xc
j ← [xc

j ; e
seg(segs(cj)], (6)

where segs(cj) denotes all segmentation labels
related to cj , and eseg(segs(cj)) is a 5-dimensional
multi-hot vector with each dimension correspond-
ing to an item of {B, M, E, S, O}.

As an example presented in Figure 2, the
character c7 (“西”) occurs in two words, w5,8

(“中山西路”) and w6,7 (“山西”), that match the
lexicon, and it occurs in the middle of “中山
西路” and the end of “山西”. Therefore, its
corresponding segmentation result is {M,E}, and
its character representation is enriched as follows:

xc
7 ← [xc

7; e
seg({M,E})]. (7)
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Figure 2: The ExSoftword method.

Here, the second and third dimensions of eseg(·)
are set to 1, and the rest dimensions are set to 0.

The problem of this approach is that it cannot
fully inherit the two merits of Lattice-LSTM. First,
it fails to introduce pre-trained word embeddings.
Second, it still losses information of the matching
results. As shown in Figure 2, the constructed
ExSoftword feature for characters {c5, c6, c7, c8} is
{{B}, {B,M,E}, {M,E}, {E}}. However, given
this constructed sequence, there exists more than
one corresponding matching results, such as {w5,6

(“中山”), w5,7 (“中山西”), w6,8 (“山西路”)} and
{w5,6 (“中山”), w6,7 (“山西”), w5,8 (“中山西
路”)}. Therefore, we cannot tell which is the
correct result to be restored.

SoftLexicon
Based on the analysis on Exsoftword, we further
developed the SoftLexicon method to incorporate
the lexicon information. The SoftLexicon features
are constructed in three steps.

Categorizing the matched words. First, to re-
tain the segmentation information, all matched
words of each character ci is categorized into four
word sets “BMES”, which is marked by the four
segmentation labels. For each character ci in the
input sequence = {c1, c2, · · · , cn}, the four set is
constructed by:

B(ci) = {wi,k,∀wi,k ∈ L, i < k ≤ n},
M(ci) = {wj,k,∀wj,k ∈ L, 1 ≤ j < i < k ≤ n},
E(ci) = {wj,i,∀wj,i ∈ L, 1 ≤ j < i},
S(ci) = {ci, ∃ci ∈ L}.

(8)

Here, L denotes the lexicon we use in this work.
Additionally, if a word set is empty, a special
word “NONE” is added to the empty word set. An
example of this categorization approach is shown
in Figure 3. Noted that in this way, not only we
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Figure 3: The SoftLexicon method.

can introduce the word embedding, but also no
information loss exists since the matching results
can be exactly restored from the four word sets of
the characters.

Condensing the word sets. After obtaining the
“BMES” word sets for each character, each word
set is then condensed into a fixed-dimensional
vector. In this work, we explored two approaches
for implementing this condensation.

The first implementation is the intuitive mean-
pooling method:

vs(S) = 1

|S|
∑
w∈S

ew(w). (9)

Here, S denotes a word set and ew denotes the
word embedding lookup table.

However, as shown in Table 8, the results
of empirical studies revealed that this algorithm
does not perform well. Therefore, a weighting
algorithm is introduced to further leverage the
word information. To maintain computational
efficiency, we did not opt for a dynamic weighting
algorithm like attention. Instead, we propose using
the frequency of each word as an indication of its
weight. Since the frequency of a word is a static
value that can be obtained offline, this can greatly
accelerate the calculation of the weight of each
word.

Specifically, let z(w) denote the frequency that
a lexicon word w occurs in the statistical data,
the weighted representation of the word set S is
obtained as follows:

vs(S) =
4

Z

∑
w∈S

z(w)ew(w), (10)

where
Z =

∑
w∈B∪M∪E∪S

z(w).



Here, weight normalization is performed on all
words in the four word sets to make an overall
comparison.

In this work, the statistical data set is constructed
from a combination of training and developing data
of the task. Of course, if there is unlabelled data
in the task, the unlabeled data set can serve as
the statistical data set. In addition, note that the
frequency of w does not increase if w is covered
by another sub-sequence that matches the lexicon.
This prevents the problem in which the frequency
of a shorter word is always less than the frequency
of the longer word that covers it.

Combining with character representation.
The final step is to combine the representations of
four word sets into one fix-dimensional feature,
and add it to the representation of each character.
In order to retain as much information as possible,
we choose to concatenate the representations of
the four word sets, and the final representation of
each character is obtained by:

es (B,M,E,S) = [vs(B);vs(M);vs(E);vs(S)],

xc ← [xc; es(B,M,E, S)].
(11)

Here, vs denotes the weighting function above.

3.3 Sequence Modeling Layer
With the lexicon information incorporated, the
character representations are then put into the
sequence modeling layer, which models the depen-
dency between characters. Generic architectures
for this layer including the bidirectional long-
short term memory network(BiLSTM), the Con-
volutional Neural Network(CNN) and the trans-
former(Vaswani et al., 2017). In this work, we
implemented this layer with a single-layer Bi-
LSTM.

Here, we precisely show the definition of the
forward LSTM:

it
ft
ot
c̃t

 =


σ
σ
σ

tanh

(W [
xct
ht−1

]
+ b

)
,

ct = c̃t � it + ct−1 � ft,
ht = ot � tanh(ct).

(12)

where σ is the element-wise sigmoid function and
� represents element-wise product. W and b
are trainable parameters. The backward LSTM
shares the same definition as the forward LSTM

Datasets Type Train Dev Test

OntoNotes
Sentence 15.7k 4.3k 4.3k

Char 491.9k 200.5k 208.1k

MSRA
Sentence 46.4k - 4.4k

Char 2169.9k - 172.6k

Weibo
Sentence 1.4k 0.27k 0.27k

Char 73.8k 14.5 14.8k

Resume
Sentence 3.8k 0.46 0.48k

Char 124.1k 13.9k 15.1k

Table 1: Statistics of datasets.

yet model the sequence in a reverse order. The
concatenated hidden states at the ith step of the
forward and backward LSTMs hi = [

−→
h i;
←−
h i]

forms the context-dependent representation of ci.

3.4 Label Inference Layer
On top of the sequence modeling layer, it is typical
to apply a sequential conditional random field
(CRF) (Lafferty et al., 2001) layer to perform label
inference for the whole character sequence at once:

p(y|s;θ) =
∏n

t=1 φt(yt−1, yt|s)∑
y′∈Ys

∏n
t=1 φt(y

′
t−1, y

′
t|s)

. (13)

Here, Ys denotes all possible label sequences
of s, and φt(y

′, y|s) = exp(wT
y′,yht + by′,y),

where wy′,y and by′,y are trainable parameters
corresponding to the label pair (y′, y), and θ
denotes model parameters. For label inference, it
searches for the label sequence y∗ with the highest
conditional probability given the input sequence s:

y∗ =y p(y|s;θ), (14)

which can be efficiently solved using the Viterbi
algorithm (Forney, 1973).

4 Experiments

4.1 Experiment Setup
Most experimental settings in this work followed
the protocols of Lattice-LSTM (Zhang and Yang,
2018), including tested datasets, compared base-
lines, evaluation metrics (P, R, F1), and so on.
To make this work self-completed, we concisely
illustrate some primary settings of this work.

Datasets
The methods were evaluated on four Chinese NER
datasets, including OntoNotes (Weischedel et al.,
2011), MSRA (Levow, 2006), Weibo NER (Peng



Models OntoNotes MSRA Weibo Resume
Lattice-LSTM 1× 1× 1× 1×
LR-CNN (Gui et al., 2019) 2.23× 1.57× 2.41× 1.44×
BERT-tagger 2.56× 2.55× 4.45× 3.12×
BERT + LSTM + CRF 2.77× 2.32× 2.84× 2.38×
SoftLexicon (LSTM) 6.15× 5.78× 6.10× 6.13×
SoftLexicon (LSTM) + bichar 6.08× 5.95× 5.91× 6.45×
SoftLexicon (LSTM) + BERT 2.74× 2.33× 2.85× 2.32×

Table 2: Inference speed (average sentences per second,
the larger the better) of our method with LSTM layer
compared with Lattice-LSTM, LR-CNN and BERT.

and Dredze, 2015; He and Sun, 2017a), and
Resume NER (Zhang and Yang, 2018). OntoNotes
and MSRA are from the newswire domain, where
gold-standard segmentation is available for training
data. For OntoNotes, gold segmentation is also
available for development and testing data. Weibo
NER and Resume NER are from social media and
resume, respectively. There is no gold standard
segmentation in these two datasets. Table 1 shows
statistic information of these datasets. As for the
lexicon, we used the same one as Lattice-LSTM,
which contains 5.7k single-character words, 291.5k
two-character words, 278.1k three-character words,
and 129.1k other words. In addition, the pre-
trained character embeddings we used are also the
same with Lattice-LSTM, which are pre-trained on
Chinese Giga-Word using word2vec.

Implementation Detail
In this work, we implement the sequence-labeling
layer with Bi-LSTM. Most implementation de-
tails followed those of Lattice-LSTM, including
character and word embedding sizes, dropout,
embedding initialization, and LSTM layer number.
Additionally, the hidden size was set to 200 for
small datasets Weibo and Resume, and 300 for
larger datasets OntoNotes and MSRA. The initial
learning rate was set to 0.005 for Weibo and 0.0015
for the rest three datasets with Adamax (Kingma
and Ba, 2014) step rule 2.

4.2 Computational Efficiency Study

Table 2 shows the inference speed of the Soft-
Lexicon method when implementing the sequence
modeling layer with a bi-LSTM layer. The speed
was evaluated based on the average number of
sentences processed by the model per second
using a GPU (NVIDIA TITAN X). From the

2Please refer to the attached source code for more
implementation detail of this work and access https://
github.com/jiesutd/LatticeLSTM for pre-trained
word and character embeddings.
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Figure 4: Inference speed against sentence length. We
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table, we can observe that when decoding with
the same batch size (=1), the proposed method
is considerably more efficient than Lattice-LSTM
and LR-CNN, performing up to 6.15 times faster
than Lattice-LSTM. The inference speeds of Soft-
Lexicon(LSTM) with bichar are close to those
without bichar, since we only concatenate an
additional feature to the character representation.
The inference speeds of the BERT-Tagger and
SoftLexicon (LSTM) + BERT models are limited
due to the deep layers of the BERT structure.
However, the speeds of the SoftLexicon (LSTM) +
BERT model are still faster than those of Lattice-
LSTM and LR-CNN on all datasets.

To further illustrate the efficiency of the Soft-
Lexicon method, we also conducted an experiment
to evaluate its inference speed against sentences
of different lengths, as shown in Table 4. For
a fair comparison, we set the batch size to 1
in all of the compared methods. The results
show that the proposed method achieves significant
improvement in speed over Lattice-LSTM and
LR-CNN when processing short sentences. With
the increase of sentence length, the proposed
method is consistently faster than Lattice-LSTM
and LR-CNN despite the speed degradation due
to the recurrent architecture of LSTM. Overall,
the proposed SoftLexicon method shows a great
advantage over other methods in computational
efficiency.

4.3 Effectiveness Study

Tables 3−63 show the performances of our method
against the compared baselines. In this study,
the sequence modeling layer of our method was

3In Table 3−5, ∗ indicates that the model uses external
labeled data for semi-supervised learning. † means that the
model also uses discrete features.

https://github.com/jiesutd/LatticeLSTM
https://github.com/jiesutd/LatticeLSTM


Input Models P R F1

Gold seg

Yang et al., 2016 65.59 71.84 68.57
Yang et al., 2016∗† 72.98 80.15 76.40
Che et al., 2013∗ 77.71 72.51 75.02
Wang et al., 2013∗ 76.43 72.32 74.32
Word-based (LSTM) 76.66 63.60 69.52

+ char + bichar 78.62 73.13 75.77

Auto seg
Word-based (LSTM) 72.84 59.72 65.63

+ char + bichar 73.36 70.12 71.70

No seg

Char-based (LSTM) 68.79 60.35 64.30
+ bichar + softword 74.36 69.43 71.89
+ ExSoftword 69.90 66.46 68.13
+ bichar + ExSoftword 73.80 71.05 72.40

Lattice-LSTM 76.35 71.56 73.88
LR-CNN (Gui et al., 2019) 76.40 72.60 74.45
SoftLexicon (LSTM) 77.28 74.07 75.64
SoftLexicon (LSTM) + bichar 77.13 75.22 76.16
BERT-Tagger 76.01 79.96 77.93
BERT + LSTM + CRF 81.99 81.65 81.82
SoftLexicon (LSTM) + BERT 83.41 82.21 82.81

Table 3: Performance on OntoNotes. A model followed
by (LSTM) (e.g., Proposed (LSTM)) indicates that its
sequence modeling layer is LSTM-based.

implemented with a single layer bidirectional
LSTM.

OntoNotes. Table 3 shows results 4 on the
OntoNotes dataset, where gold word segmentation
is provided for both training and testing data.
The methods of the “Gold seg” and the “Auto
seg” groups are all word-based, with the former
input building on gold word segmentation
results and the latter building on automatic word
segmentation results by a segmenter trained on
OntoNotes training data. The methods used in
the “No seg” group are character-based. From the
table, we can make several observations. First,
when gold word segmentation was replaced by
automatically generated word segmentation, the
F1 score decreases from 75.77% to 71.70%. This
reveals the problem of treating the predicted
word segmentation result as the true result in the
word-based Chinese NER. Second, the F1 score
of the Char-based (LSTM)+ExSoftword model
is greatly improved from that of the Char-based
(LSTM) model. This indicates the feasibility of
the naive ExSoftword method. However, it still
greatly underperforms relative to Lattice-LSTM,
which reveals its deficiency in utilizing word
information. Lastly, the proposed SoftLexicon
method outperforms Lattice-LSTM by 1.76%
with respect to the F1 score, and obtains a greater
improvement of 2.28% combining the bichar

4A result in boldface indicates that it is statistically
significantly better (p < 0.01 in pairwise t−test) than the
others in the same box.

Models P R F1
Chen et al., 2006 91.22 81.71 86.20
Zhang et al. 2006∗ 92.20 90.18 91.18
Zhou et al. 2013 91.86 88.75 90.28
Lu et al. 2016 - - 87.94
Dong et al. 2016 91.28 90.62 90.95
Char-based (LSTM) 90.74 86.96 88.81
+ bichar+softword 92.97 90.80 91.87
+ ExSoftword 90.77 87.23 88.97
+ bichar+ExSoftword 93.21 91.57 92.38

Lattice-LSTM 93.57 92.79 93.18
LR-CNN (Gui et al., 2019) 94.50 92.93 93.71
SoftLexicon (LSTM) 94.63 92.70 93.66
SoftLexicon (LSTM) + bichar 94.73 93.40 94.06
BERT-Tagger 93.40 94.12 93.76
BERT + LSTM + CRF 95.06 94.61 94.83
SoftLexicon (LSTM) + BERT 95.75 95.10 95.42

Table 4: Performance on MSRA.

Models NE NM Overall
Peng and Dredze, 2015 51.96 61.05 56.05
Peng and Dredze, 2016∗ 55.28 62.97 58.99
He and Sun, 2017a 50.60 59.32 54.82
He and Sun, 2017b∗ 54.50 62.17 58.23
Char-based (LSTM) 46.11 55.29 52.77

+ bichar+softword 50.55 60.11 56.75
+ ExSoftword 44.65 55.19 52.42
+ bichar+ExSoftword 58.93 53.38 56.02

Lattice-LSTM 53.04 62.25 58.79
LR-CNN (Gui et al., 2019) 57.14 66.67 59.92
SoftLexicon (LSTM) 59.08 62.22 61.42
SoftLexicon (LSTM) + bichar 58.12 64.20 59.81
BERT-Tagger 65.77 62.05 63.80
BERT + LSTM + CRF 69.65 64.62 67.33
SoftLexicon (LSTM) + BERT 70.94 67.02 70.50

Table 5: Performance on Weibo. NE, NM and Overall
denote F1 scores for named entities, nominal entities
(excluding named entities) and both, respectively.

feature. It even performs comparably with the
word-based methods of the “Gold seg” group,
verifying its effectiveness on OntoNotes.

MSRA/Weibo/Resume. Tables 4, 5 and 6 show
results on the MSRA, Weibo and Resume datasets,
respectively. Compared methods include the
best statistical models on these data set, which
leveraged rich handcrafted features (Chen et al.,
2006; Zhang et al., 2006; Zhou et al., 2013),
character embedding features (Lu et al., 2016; Peng
and Dredze, 2016), radical features (Dong et al.,
2016), cross-domain data, and semi-supervised
data (He and Sun, 2017b). From the tables, we
can see that the performance of the proposed Soft-
lexion method is significant better than that of
Lattice-LSTM and other baseline methods on all
three datasets.



Models P R F1
Word-based (LSTM) 93.72 93.44 93.58

+char+bichar 94.07 94.42 94.24
Char-based (LSTM) 93.66 93.31 93.48

+ bichar+softword 94.53 94.29 94.41
+ ExSoftword 95.29 94.42 94.85
+ bichar+ExSoftword 96.14 94.72 95.43

Lattice-LSTM 94.81 94.11 94.46
LR-CNN (Gui et al., 2019) 95.37 94.84 95.11
SoftLexicon (LSTM) 95.30 95.77 95.53
SoftLexicon (LSTM) + bichar 95.71 95.77 95.74
BERT-Tagger 94.87 96.50 95.68
BERT + LSTM + CRF 95.75 95.28 95.51
SoftLexicon (LSTM) + BERT 96.08 96.13 96.11

Table 6: Performance on Resume.

Models OntoNotes MSRA Weibo Resume
SoftLexicon (LSTM) 75.64 93.66 61.42 95.53
ExSoftword (CNN) 68.11 90.02 53.93 94.49
SoftLexicon (CNN) 74.08 92.19 59.65 95.02
ExSoftword (Transformer) 64.29 86.29 52.86 93.78
SoftLexicon (Transformer) 71.21 90.48 61.04 94.59

Table 7: F1 score with different implementations of the
sequence modeling layer. ExSoftword is the shorthand
of Char-based+bichar+ExSoftword.

4.4 Transferability Study

Table 7 shows the performance of the SoftLexicon
method when implementing the sequence modeling
layer with different neural architecture. From
the table, we can first see that the LSTM-based
architecture performed better than the CNN- and
transformer- based architectures. In addition, our
method with different sequence modeling layers
consistently outperformed their corresponding Ex-
Softword baselines. This confirms the superiority
of our method in modeling lexicon information in
different neural NER models.

4.5 Combining Pre-trained Model

We also conducted experiments on the four datasets
to further verify the effectiveness of SoftLexicon in
combination with pre-trained model, the results
of which are shown in Tables 3−6. In these
experiments, we first use a BERT encoder to obtain
the contextual representations of each sequenc,
and then concatenated them into the character
representations. From the table, we can see that
the SoftLexicon method with BERT outperforms
the BERT tagger on all four datasets. These
results show that the SoftLexicon method can
be effectively combined with pre-trained model.
Moreover, the results also verify the effectiveness
of our method in utilizing lexicon information,

Models OntoNotes MSRA Weibo Resume
SoftLexicon (LSTM) 75.64 93.66 61.42 95.53

- “M” group 75.06 93.09 58.13 94.72
- Distinction 70.29 92.08 54.85 94.30
- Weighted pooling 72.57 92.76 57.72 95.33
- Overall weighting 74.28 93.16 59.55 94.92

Table 8: An ablation study of the proposed model.

which means it can complement the information
obtained from the pre-trained model.

4.6 Ablation Study

To investigate the contribution of each component
of our method, we conducted ablation experiments
on all four datasets, as shown in table 8.

(1) In Lattice-LSTM, each character receives
word information only from the words that begin
or end with it. Thus, the information of the
words that contain the character inside is ignored.
However, the SoftLexicon prevents the loss of this
information by incorporating the “Middle” group
of words. In the “ - ‘M’ group” experiment, we
removed the ”Middle” group in SoftLexicon, as
in Lattice-LSTM. The degradation in performance
on all four datasets indicates the importance of the
“M” group of words, and confirms the advantage of
our method.

(2) Our method proposed to draw a clear dis-
tinction between the four “BMES” categories of
matched words. To study the relative contribution
of this design, we conducted experiments to remove
this distinction, i.e., we simply added up all the
weighted words regardless of their categories. The
decline in performance verifies the significance of
a clear distinction for different matched words.

(3) We proposed two strategies for pooling the
four word sets in Section 3.2. In the “- Weighted
pooling” experiment, the weighted pooling strategy
was replaced with mean-pooling, which degrades
the performance. Compared with mean-pooling,
the weighting strategy not only succeeds in weigh-
ing different words by their significance, but also
introduces the frequency information of each word
in the statistical data, which is verified to be helpful.

(4) Although existing lexicon-based methods
like Lattice-LSTM also use word weighting, un-
like the proposed Soft-lexion method, they fail
to perform weight normalization among all the
matched words. For example, Lattice-LSTM only
normalizes the weights inside the “B” group or the
”E” group. In the “- Overall weighting” experiment,
we performed weight normalization inside each



“BMES” group as Lattice-LSTM does, and found
the resulting performance to be degraded. This
result shows that the ability to perform overall
weight normalization among all matched words
is also an advantage of our method.

5 Conclusion

In this work, we addressed the computational effi-
ciency of utilizing word lexicons in Chinese NER.
To obtain a high-performing Chinese NER system
with a fast inference speed, we proposed a novel
method to incorporate the lexicon information into
the character representations. Experimental studies
on four benchmark Chinese NER datasets reveal
that our method can achieve a much faster inference
speed and better performance than the compared
state-of-the-art methods.
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