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A Mixed Generative-Discriminative
Based Hashing Method
Qi Zhang, Yang Wang, Jin Qian, and Xuanjing Huang

Abstract—Hashing methods have proven to be useful for a variety of tasks and have attracted extensive attention in recent years.

Various hashing approaches have been proposed to capture similarities between textual, visual, and cross-media information.

However, most of the existing works use a bag-of-words methods to represent textual information. Since words with different forms

may have similar meaning, semantic level text similarities can not be well processed in these methods. To address these challenges, in

this paper, we propose a novel method called semantic cross-media hashing (SCMH), which uses continuous word representations to

capture the textual similarity at the semantic level and use a deep belief network (DBN) to construct the correlation between different

modalities. To demonstrate the effectiveness of the proposed method, we evaluate the proposed method on three commonly used

cross-media data sets are used in this work. Experimental results show that the proposed method achieves significantly better

performance than state-of-the-art approaches. Moreover, the efficiency of the proposed method is comparable to or better than that of

some other hashing methods.

Index Terms—Hashing method, word embedding, fisher vector

Ç

1 INTRODUCTION

WITH the rapid expansion of theWorldWideWeb, digi-
tal information has become much easier to access,

modify, and duplicate. Hence, hashing based similarity
calculation or approximate nearest neighbour searching
methods have been proposed and received considerable
attention in recent years. Various applications such as infor-
mation retrieval, near duplicate detection, and data mining
are performed by hashing based methods. Due to the rapid
expansion of mobile networks and social media sites, infor-
mation input through multiple channels has also attracted
increasing attention. Images and videos are associated
with tags and captions. According to research published on
eMarketer, about 75 percent of the content posted by
Facebook users contains photos.1 The relevant data from
different modalities usually have semantic correlations.
Therefore, it is desirable to support the retrieval of informa-
tion through different modalities. For example, images
can be used to find semantically relevant textual informa-
tion. On the other side, images without (or with little)
textual descriptions are highly needed to be retrieved with
textual query.

Along with the increasing requirements, in recent
years, cross-media search tasks have received considerable
attention [1], [2], [3], [4], [5], [6], [7]. Since each modality
having different representation methods and correlational

structures, a variety of methods studied the problem from
the aspect of learning correlations between different modali-
ties. Existing methods proposed to use Canonical Correla-
tion Analysis (CCA) [8], manifolds learning [9], dual-wing
harmoniums [10], deep autoencoder [11], and deep Boltz-
mann machine [12] to approach the task. Due to the effi-
ciency of hashing-based methods, there also exists a rich
line of work focusing the problem of mapping multi-modal
high-dimensional data to low-dimensional hash codes, such
as Latent semantic sparse hashing (LSSH) [13], discrimina-
tive coupled dictionary hashing (DCDH) [14], Cross-view
Hashing (CVH) [15], and so on.

Most of the existing works use a bag-of-words to model
textual information. The semantic level similarities between
words or documents are rarely considered. Let us consider
the following examples:

S1. The company announces new operating system.
S2. The company releases new operating system.
S3. The company delays new operating system.

From these examples, we can observe that although only
one word differs between the three sentences, sentence S3
should not be considered as the near duplicate sentence of
S1 and sentence S2. The meaning expressed by S3 is much
different with S1 and S2’s. Since existing methods are usu-
ally based on lexical level similarities, this kind of issue can-
not be well addressed by these methods.

In short text segments (e.g., microblogs, captions, and
tags), the similarities between words are especially impor-
tant for retrieval. For example: journey versus travel, coast
versus shore. According to human-assigned similarity judg-
ments [16], more than 90 percent of subjects thought that
these pairs of words had similar meanings. Fig. 1 illustrates a
set of images retrieved from Flickr using different queries.
From these examples, we can see that images may express
similar concepts, even though there is little overlap in terms
of annotated tags. Since users rarely annotate a single image

1. http://www.socialmediaexaminer.com/photos-generate-
engagement-research/
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using multiple words with similar meaning, semantic level
textual similarities should be incorporated into the cross-
media retrieval.

Motivated by the success of continuous space word rep-
resentations (also called word embeddings) in a variety of
tasks, in this work we propose to incorporate word embed-
dings to meet these challenges. Words in a text are embed-
ded in a continuous space, which can be viewed as a
Bag-of-Embedded-Words (BoEW). Since the number of
words in a text is dynamic, in [17], we proposed a method
to aggregate it into a fixed length Fisher Vector (FV), using a
Fisher kernel framework [18]. However, the proposed
method only focus on textual information. Another chal-
lenge in this task is how to determine the correlation
between multi-modal representations. Since we propose the
use of a Fisher kernel framework to represent the textual
information, we also use it to aggregate the SIFT descrip-
tors [19] of images. Through the Fisher kernel framework,
both textual and visual information is mapped to points in
the gradient space of a Riemannian manifold. However, the
relationships that exist between FVs of different modalities
are usually highly non-linear. Hence, to construct the corre-
lation between textual and visual modalities, we introduce
a DBN based method to model the mapping function, which
is used to convert abstract representations of different
modalities from one to another.

The main contributions of this work are summarized as
follows.

� We propose to incorporate continuous word repre-
sentations to handle semantic textual similarities
and adopted for cross-media retrieval.

� Inspired by the advantages of DBN in handling
highly non-linear relationships and noisy data, we
introduce a novel DBN based method to construct
the correlation between different modalities.

� A variety of experiments on three cross-media com-
monly used benchmarks demonstrate the effective-
ness of the proposed method. The experimental
results show that the proposed method can signifi-
cantly outperform the state-of-the-art methods.

2 RELATED WORK

Along with the increasing requirement, extensive Hashing-
based methods have been proposed for cross-media
retrieval. In this section, we briefly describe the related
works, which can be categorized into the following four
research areas: cross-media retrieval, text Reuse detection,
and hashing methods.

2.1 Cross-Media Retrieval

Cross-media retrieval, in which the modality of input query
and the returned results can be of different, has received
considerable attentions [1], [3], [6], [7], [8], [9], [10], [12],
[20], [21]. Wu et al. [8] introduced a Canonical Correlation
Analysis based method to construct isomorphic subspace
and multi-modal correlations between media objects and
polar coordinates to judge the general distance of media
objects. Due to lack of sufficient training samples, relevance
feedback of user was used to accurately refine cross-media
similarities. Yang et al. [9] proposed manifold-based
method, in which they used Laplacian media object space to
represent media object for each modality and an multime-
dia document semantic graph to learn the multimedia docu-
ment semantic correlations. In [22], a rich-media object
retrieval method is proposed to represent data consisting of
multiple modalities, such as 2-D images, 3-D objects and
audio files. To tackle the large scale problem, a multimedia
indexing scheme was also adopted.

Since the relationships across different modalities are
typically highly non-linear and observations are usually
noisy, Srivastava and Salakhutdinov [12] proposed a Deep
Boltzmann Machine to learn joint representations of image
and text inputs. The proposed model fuses multiple data
modalities into a unified representation, which can be used
for classification and retrieval. Xing et al. [10] introduced to
use dual-wing harmoniums to build a joint model for
images and text. The model incorporated Gaussian hidden
units together with Gaussian and Poisson visible units into
a linear RBM model. In [12], a multimodal deep Boltzmann
machine was proposed for learning multimodal data
representations. To reduce the training time complexity,

Fig. 1. An example of top retrieved images from Flickr with different tags.
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Zhang and Li [6] proposed to seamlessly integrate semantic
labels into the hashing learning procedure for large-scale
data modeling.

In past few years, deep neural networks (DNNs) have
achieved tremendous success in various tasks. Cross-media
retrieval is one of the tasks which DNNs and other neural
network architectures obtained improvements. In [11], a
deep autoencoder was proposed to learn features over mul-
tiple modalities. The method uses the hidden units to con-
struct shallow representation for the data and builds deep
bimodal representations by modeling the correlations
across the learned shallow representations. Karpathy and
Fei-Fei proposed a multimodal recurrent neural network for
generating descriptions for images[23]. The generated
descriptions can be used for cross-media retrieval.

Most of the existing works described above focused on
constructing the correlations between multiple modalities
from different aspects. They usually use bag-of-words
model to represent text. However, we in this work propose
to use Fisher kernel framework to represent both textual
and visual information and use a deep network to construct
the correlations between the two manifolds.

2.2 Near-Duplicate Detection

The task of detecting near duplicate textual information has
received considerable attentions in recent years. Previous
works studied the problem from different aspects such as
fingerprint extraction methods with or without linguistic
knowledge, hash codes learning methods, different granu-
larities, and so on.

Broder [24] proposed Shingling method, which uses con-
tiguous subsequences to represent documents. It does not
rely on any linguistic knowledge. If sets of shingles
extracted from different documents are appreciably over-
lap, these documents are considered exceedingly similar,
which are usually measured by Jaccard similarity. In order
to reduce the complexity of shingling, meta-sketches was
proposed to handle the efficiency problem [25]. In order to
improve the robustness of shingle-like signatures, Theobald
et al. [26] introduced a method, SpotSigs. It provides more
semantic pre-selection of shingles for extracting characteris-
tic signatures from Web documents. SpotSigs combines
stopword antecedents with short chains of adjacent content
terms. The aim of it is to filter natural-language text pas-
sages out of noisy Web page components. They also pro-
posed several pruning conditions based on the upper
bounds of Jaccard similarity.

I-Match [27] is one of the methods using hash codes to
represent input document. It filters the input document
based on collection statistics and compute a single hash
value for the remainder text. If the documents have same
hash value, they are considered as duplicates. It hinges on
the premise that removal of very infrequent terms and very
common terms results good document representations for
the near-duplicate detection task. Since I-Match signatures
are respect to small modifications, Ko»cz et al. [28] proposed
the solution of several I-Match signatures, all derived from
randomized versions in the original lexicon.

Local text reuse detection focused on identifing the
reused and modified sentences, facts or passages, rather
than whole documents. Seo and Croft [29] analyzed the task

and defined six categories of text reuses. They proposed a
general framework for text reuse detection. Several finger-
printing techniques under the framework were evaluated
under the framework. Zhang et al. [30] also studied the
partial-duplicate detection problem. They converted the
task into two subtasks: sentence level near-duplicate detec-
tion and sequence matching. Except for the similarities
between documents, the method can simultaneously output
the positions where the duplicated parts occur. In order to
handle the efficiency problem, they implement their method
using three Map-Reduce jobs. Kim et al. [31] proposed to
map sentences into points in a high dimensional space and
leveraged range searches in this space. They used MD5
hash function to generate hash code for each word. File sig-
nature is then created by taking the bitwise-or of all signa-
tures of words that appear in the file.

Different with these existing methods, in this paper, we
propose to use aggregated word embeddings to capture the
semantic level similarities to reduce the false matches.

2.3 Hashing-Based Methods

In recent years, hashing-based methods, which create com-
pact hash codes that preserve similarity, for single-modal
or cross-modal retrieval on large-scale databases have
attracted considerable attention [4], [5], [12], [13], [14], [15],
[32], [33], [34], [35], [36], [37], [38]. For single-modal, Hinton
and Salakhutdinov [33] proposed a two-layer network,
which is called a Restricted Boltzmann machine (RBM),
with a small central layer to convert high-dimensional input
vectors into low-dimensional codes. In [36], spectral hash-
ing was defined to seek compact binary codes in order to
preserve the semantic similarity between codewords. The
criterion used in spectral hashing is related to graph parti-
tioning. Norouzi and Fleet [39] introduced a method based
on latent structural SVM framework for learning similarity-
preserving hash functions. A specific loss function is
designed to incorporating both Hamming distance and
binary quantization into consideration. In [40], Self-Taught
Hashing (STH) converted the hash codes learning problem
into two stages. Unsupervised method, binarised Laplacian
Eigenmap, is used to optimize l-bit binary codes. The classi-
fiers were trained to predict the l-bit code for unseen
documents.

A variety works studied the problem of mapping multi-
modal high-dimensional data to low-dimensional hash
codes. Latent semantic sparse hashing [13] proposed the
use of Matrix Factorization to represent text and sparse cod-
ing to capture the salient structures of images. Then, these
representations are mapped to a joint abstraction space.
However, LSSH requires the use of both visual and textual
information to construct the data set. Although out-of-sam-
ples can be estimated, the performances may be heavily
influenced. Yu et al. [14] introduced a discriminative cou-
pled dictionary hashing approach, which generated a cou-
pled dictionary for each modality based on category labels.
Kumar and Udupa [15] formulated formulated the problem
of learning hash functions as a constrained minimization
problem. Since the optimization problem is NP hard, they
transformed it into a tractable eigenvalue problem by means
of a relaxation. Inter-media hashing (IMH) [4] uses a linear

ZHANG ET AL.: A MIXED GENERATIVE-DISCRIMINATIVE BASED HASHING METHOD 3
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regression model to jointly learn a set of hashing functions
for each individual media type.

Since we in this work learn the mapping functions
between FVs of different modalities, all the hashing based
methods for single modality can be incorporated into it.

2.4 Neural Networks for Representing
Image and Text

The task of learning continuous space word representations
have a long history[41], [42], [43], [44], [45], [46], [47]. It has
demonstrated outstanding results across a variety of tasks.
Hinton and Salakhutdinov [44] introduced a deep genera-
tive model to learn word-count vector and binary code for
documents. In [45], the word representations are learned by
a recurrent neural network language model. The proposed
architecture consists of an input layer and a hidden layer
with recurrent connections. Probabilistic neural network
language model (NNLM) [48] simultaneously learns a dis-
tributed representation for each word and the probability
function for word sequences. Bordes et al.[41] proposed to
use multi-task training process to jointly learn representa-
tions of words, entities and meaning representations. The
work described in [49] introduced a mix of unsupervised
and supervised techniques to learn word vectors to capture
both semantic and sentiment similarities among words.

On the image side, there are also a variety of studies tack-
ling the problem of higher-level representations of visual
information. Krizhevsky et al. [50] proposed to use a deep
convolutional neural network to perform object detection.
In [51], region proposals are combined with CNNs to gener-
ate features for object detection. Except for these supervised
methods, unsupervised learning methods for training visual
features have also been carefully studied. Lee et al. [52]
introduced convolutional deep belief network , a hierarchi-
cal generative model, represent images. Taylor et al. [53]
proposed a convolutional gated restricted Boltzmann
machineto model the spatio-temporal features for videos.

Although, in this work, we use word embeddings and
SIFT to represent texts and images respectively, the pro-
posed method can also incorporate these representations.

3 THE PROPOSED METHOD

The processing flow of the proposed semantic cross-media
hashing (SCMH) method is illustrated in Fig. 2. Given a col-
lection of text-image bi-modality data, we firstly represent
image and text respectively. Through table lookup, all the
words in a text are transformed to distributed vectors gener-
ated by the word embeddings learning methods. For repre-
senting images, we use SIFT detector to extract image
keypoints. SIFT descriptor is used to calculate descriptors of
the extracted keypoints [19]. After these steps, a variable
size set of points in the embeddings space represents the
text, and a variable size set of points in SIFT descriptor
space represents each image. Then, the Fisher kernel frame-
work is utilized to aggregate these points in different spaces
into fixed length vectors, which can also be considered as
points in the gradient space of the Riemannian manifold.
Henceforth, texts and images are represented by vectors
with fixed length. Finally, the mapping functions between
textual and visual Fisher vectors (FVs) are learned by a
deep neural network. We use the learned mapping function
to convert FVs of one modality to another. Hash code gener-
ation methods are used to transfer FVs of different modali-
ties to short length binary vectors. In the following section,
we provide detailed examples of practical applications of
the proposed method.

3.1 Word Embeddings Learning

Representation of words as continuous vectors recently has
been shown to benefit performance for a variety of NLP
and IR tasks [44], [46], [47]. Similar words tend to be close
to each other with the vector representation. Moreover,
Mikolov et al. [54] also demonstrated the learned word
representations could capture meaningful syntactic and
semantic regularities. Hence, in this work, we propose to
use word embeddings to capture the semantic level simi-
larities between short text segments.

Fig. 3 shows three architectures used for learning word
embeddings. wi represents the ith words in the given words
sequence fw1; w2; . . . ; wTg. Fig. 3a shows the architecture of

Fig. 2. An overview processing flow of the proposed SCMH for cross-media retrieval.
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the probabilistic neural network language model (NNLM)
proposed by Bengio et al. in [48]. It can have either one hid-
den layer beyond the word features mapping or direct con-
nections from the word features to the output layer. They
also proposed to use softmax function for the output layer
to guarantee positive probabilities summing to 1. The word
vectors and the parameters of that probability function can
be learned simultaneously. In this work, we only use the
learned word vectors.

Figs. 3b and 3c show the architectures of the methods
proposed by Mikolov in [54]. The architecture of CBOW,
which is similar to NNLM, is shown in Fig. 3b. The main
differences are that (i) the non-linear hidden layer is
removed; (ii) the words from the future are included; (iii)
the training criterion is to correctly classify the current (wt)
word. The Skip-gram architecture, which is shown in
Fig. 3c, is similar to CBOW. However, instead of predicting
the current word based on the history and future words, it
tries to maximize classification accuracy of words within a
certain range before and after the current word based on
only the current word as input.

Besides the methods mentioned above, there are also
a large number of works addressing the task of learning
distributed word representations [47], [49], [55]. Most of
them can also be used in this work. The proposed frame-
work has no limits in using which of the continuous
word representation methods.

3.2 Fisher Kernel Framework

Fisher kernel framework [18] was proposed to directly
obtain the kernel function from a generative probability
model. A parametric class of probability models P ðXjuÞ
where u 2 Q � Rl for some positive integer l. If the depen-
dence on u is sufficiently smooth, the collection of models
with parameters from Q can be viewed as a manifold MQ.
Though applying a scalar product at each point P ðXjuÞ 2
MQ, it can be turned into a Riemannian manifold [56].

We denote a text or an image X ¼ xi; 1 � i � jXjf g,
where xi is the embedding of ith word of a text or the SIFT
descriptors of the ith keypoint of an image, jXj is the num-
ber of words in a text or the number of the extracted key-
points in an image. xi is D-dimension word embeddings or
SIFT descriptors. We should note that there may be different
parameters for different data sets. According to the Fisher

kernel framework, X can be modeled by a probability den-
sity function. In this work, P ðXjuÞ is given by Gaussian mix-
ture model (GMM), which a sum of N Gaussians Nðmi;SiÞ
with weights vi. Let u ¼ fvi;mi;Si; 8i ¼ 1 . . .Ng be the set
of GMM parameters. The parameters u are estimated
through the optimization of Maximum Likelihood (ML) cri-
terion using Expectation Maximization (EM) method [57].

Based on the learned parameters set u, a text or an image
X can be characterized by the gradient vector using the fol-
lowing function:

GX
u ¼ ru logP ðXjuÞ

¼ @

@u1
log ðP ðXjuÞ; . . . ; @

@ul
log ðP ðXjuÞÞ

� �
;

(1)

where GX
u is a vector whose dimensionality is only depen-

dent on the number of parameters in �, not on the number
of words or keypoints. The gradient describes the contribu-
tion of each individual parameters to the generative process.
It can also be interpreted as how these parameter contribute
to the process of generating an example. We follow the
work described in [18] for normalizing these gradients by
incorporating Fisher information matrix (FIM) Fu. Accor-
ding to the theory of information geometry [58], U ¼
fP ðXjuÞ; u 2 Qg, which is a parametric family of distribu-
tions, can be regarded as a Riemanninan manifold MQ with

a local metric given by the FIM Fu 2 RM�M :

Fu ¼ E ru logP ðXjuÞrulogP ðXjuÞT
� �

: (2)

The similarity between two samples X and Y can be mea-
sured by the Fisher kernel defined as:

KFKðX;Y Þ ¼ GX
u

T
F�1
u GY

u : (3)

Since Fu is symmetric and positive definite, F�1
u can be

transformed to LT
u Lu based on the Cholesky decomposition.

Therefore,KFKðX;Y Þ can be rewritten as follows:

KFKðX; Y Þ ¼ G X
u

T
G Y
u ; (4)

where

G X
u ¼ LuG

X
u ¼ Luru logP ðXjuÞ: (5)

Fig. 3. Methods used to learn word embeddings. The NNLM architecture predicates the probability of words based on the existing words [48]. CBOW
predicts the current word based on the context [54]. Skip-gram predicts surrounding words given the current word [54].
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In this work, we assume that xið1 � i � jXjÞ follows the

naive independence model, G X
u can be rewritten as follows:

XjXj

i¼1

Lu rulogP ðxijuÞ: (6)

G X
u is also referred to as the Fisher Vector ofX.
Based on the specific probability density function GMM,

which we used in this work, FV of X is respect to the mean
m and standard deviation s of all the mixed Gaussian distri-
butions. Let gxiðkÞ be the soft assignment of the xi in X to

Gaussian k:

gxiðkÞ ¼ Pðkjxi; uÞ ¼ viPkðxijuÞPN
j¼1 vjPjðxijuÞ

: (7)

Mathematical derivations lead to:

G X
m;k ¼

1

jXj ffiffiffiffiffivi
p

XjXj

i¼1

gxi
ðkÞ xi � mk

sk

� �
; G X

s;k

¼ 1

jXj ffiffiffiffiffiffiffi2vi

p
XjXj

i¼1

gxi
ðkÞ ðxi � mkÞ2

s2
k

� 1

" #
: (8)

The division between vectors is as a term-by-term opera-
tion. The final gradient vector G X

� is is the concatenation of

the G X
m;k and G X

s;k vectors for k ¼ 1 . . .N . Let T be the

dimensionality of the vector offsets. The final gradient vec-

tor G X
� is therefore 2NT-dimensional.

3.3 Mapping Function Learning

To transfer the FVs of one modality to another, we propose
to use a deep belief network with one hidden layer to
achieve the task. Fig. 4 shows the structure of the proposed
method. The building block of the network used in this
work is the Gaussian restricted Boltzmann machine.
Because we have converted both textual and visual informa-
tion into the gradient space of a Riemannian manifold, we in
this work use a single hidden layer model to do it.

The restricted Boltzmann machine is a kind of an undi-
rected graphical model with observed units and hidden
units. The undirected graph of an RBM has an bipartite
structure. It can be understood as a Markov random field
with latent factors which explain the input observed data
using binary hidden variables. Let v be the L dimensional
observed data, which can take real values or binary values.
The dimension of stochastic binary units h isK. Each visible
unit is connected to each hidden unit. The graphical model

representation is illustrated in Fig. 5. The parameters of

RBM consist of the weight matrix W 2 RL�K , the biases

c 2 RL for observed units, and the biases b 2 RK for hidden
units. If the observed units are real-valued, the model is
called the Gaussian RBM. Its joint probability distribution
can be defined as follows:

P ðv;hÞ ¼ 1

Z
expð�Eðv;hÞÞ; Eðv;hÞ

¼ 1

2s2

X
i

ðvi � ciÞ2 � 1

s

X
i;j

viWijhj �
X
j

bjhj; (9)

where Z is a normalization constant. The conditional distri-
bution of this model can be written as follows:

P ðhj ¼ 1jvÞ ¼ sigm
1

s

X
i

Wijvi þ bj

 !
; (10)

P ðvi ¼ 1jhÞ ¼ N vi; s
X
j

Wijhj þ ci; s
2

 !
; (11)

where sigmðsÞ ¼ 1
1þexpð�sÞ is the sigmoid function, and

Nð:; :; :Þ is a Gaussian distribution.

Although exact maximum likelihood learning in this
model is intractable, sampling-based approximate maxi-
mum-likelihood methods can be used to estimated the
parameters. Because the variables in a layer are conditionally
independent, block Gibbs sampling can be performed in par-
allel. After training the RBM, Fisher vectors of different
modalities can be transferredwith the estimated parameters.

3.4 Hash Code Generation

Through the previous steps, a variable length of text seg-
ments or keypoints can be transferred to a fixed length vec-
tor. However, Fisher vectors are usually high dimensional
and dense. It limits the usages of FVs for large-scale applica-
tions, where computational requirement should be studied.
In this work, we propose to use hashing methods to address
the efficiency problem.

The task of generating hash codes for samples can be
formalized as learning a mapping bðxÞ, referred to as a hash
function, which can project p-dimensional real-valued
inputs x 2 Rp onto q-dimensional binary codes h 2 H
� f�1; 1gq, while preserving similarities between samples
in original spaces and transformed spaces. The mapping
bðxÞ can be parameterized by a real-valued vectorw as:

bðx;wÞ ¼ signðfðx;wÞÞ; (12)

Fig. 4. A single hidden layer model for mapping FVs of different
modalities. FVi and FVt denote the Fisher vector of image and text,
respectively. h represents the hidden layer.

Fig. 5. A graphical model representation of restricted Boltzmann
machine.
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where signð�Þ represents the element-wise sign function, and
fðx;wÞ denotes a real-valued transformation from Rp to Rq.
In this work, Fisher vectors of text segments or keypoints
are the x in mapping function bðx;wÞ. A variety of existing
methods have been proposed to achieve this task under this
framework using different forms of f and different optimi-
zation objectives. Most of the learning to hash methods for
dense vectors can be used in this framework. In this work,
we evaluated several state-of-the-arts hashing methods,
whose performances are shown in the experiment section.

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed method,
we compare and contrast the experimental results of SCMH
and state-of-the-art hashing methods on three commonly
used data sets for cross-media retrieval.

4.1 Data Sets

The three data sets used in this example contain both texts
and images. They have been chosen for the purpose of eval-
uating various cross-media retrieval methods.

Flickr. The MIR Flickr data set2 [59], which consists of
one million images along with their user assigned tags,
was collected from Flickr. Out of all the images, 25,000
images are annotated for 24 concepts, including object
categories (e.g., bird, people) and scene categories (e.g.,
sky, night). A stricter annotation was made on 14 con-
cepts where a subset of the positive images was selected
only if the concept is salient in the image. Therefore,
this leads to a total of 38 concepts for this data set. Fol-
lowing previous works, each image may belong to one
or more concepts. Image-text pairs are considered to be
similar if they share the same concept.

LabelMe. The LabelMe data set3 [60] contains 2,688 images,
which belong to eight outdoor scene categories: coast, moun-
tain, forest, open country, street, inside city, tall buildings
and highways. All the objects in these images have been fully
labeled and used as tags of the images. Following the work
described in [13], tags occurring in fewer than three images
are discarded. Therefore, there are a total of 245 unique tags
remaining. To construct the golden standards, we also follow
previous works and assume that image-text pairs are
regarded as similar if they share the same scene label.

NUS-WIDE. The NUS-WIDE data set4 [61] contains
images and their associated tags from Flickr. The total
number of images and unique tags are 269,648 and 5,018
respectively. The dataset includes six kinds of low-level
features extracted from these images and 81 manually
constructed ground-truth concepts. For comparison with
previous methods, we also used the 10 most common
concepts, and randomly selected 20,000 images from
them for evaluation. We treat as similar image-text pairs
labeled with the same concepts

4.2 Experiment Settings

For multimodal documents, we use the SIFT framework to
represent images and use word embeddings to represent

text. We use the SIFT keypoint detector to extract a variable
number of keypoints for each image and calculate the
descriptors of the keypoints using 128-dimensional SIFT
descriptors. The toolkit we used in this work is VLFeat
0.9.19.5 The word embeddings we used in this work are pre-
trained vectors trained on part of a Google News dataset
(about 100 billion words). A Skip-gram model [62] was used
to generate these 300-dimensional vectors for three million
words and phrases. For generating Fisher vectors, we use
the implementation of INRIA [63].

To demonstrate the effectiveness of the propose method,
we evaluated the following state-of-the-art methods on the
three data sets:

� Cross-view Hashing [15] maps similar objects to simi-
lar codes across the views to enable cross-view simi-
larity search.

� Discriminative coupled dictionary hashing [14] gener-
ates a coupled dictionary for each modality based on
category labels.

� Multi view discriminative coupled dictionary hashing
(MV-DCDH) [14] is extended from DCDH with
multi-view representation to enhance the represent-
ing capability of the relatively “weak” modalities.

� Latent semantic sparse hashing [13] uses Matrix Factori-
zation to represent text and sparse coding to capture
the salient structures of images.

� Collective matrix factorization hashing (CMFH) [1] gen-
erates unified hash codes for different modalities of
one instance through collective matrix factorization
with latent factor model.

� Semantic correlation maximization (SCM) [6] integra-
tes semantic labels into the hashing learning proce-
dure for preserving the semantic similarity cross
modalities.

The toolkits of LSSH, DCDH, and MV-DCDH are kindly
provided by the authors. As we mentioned in the previous
section, the proposed method SCMH can incorporate any
hashing methods for single modality. In this work, we use
Semantic Hashing to generate hash codes for both textual
and visual information. Semantic Hashing [33] is a multi-
layer neural network with a small central layer to convert
high-dimensional input vectors into low-dimensional
codes.6 For the length of hash codes, all the methods gener-
ate 32, 64, and 128 bits hash codes.

Following previous literatures on this task, we also adopt
the widely used Mean Average Precision (MAP) as the evalu-
ation metric. For a single query and top-K retrieved instan-
ces, Average Precision (AP) is defined as follows:

AP ¼ 1

R

XK
k¼1

P ðkÞdðkÞ;

where R denotes the number of ground-truth instances in
the retrieved set, P ðkÞ denotes the precision of top-k
retrieved instances, and dðkÞ is an indicator function which
equals to 1 if the kth instance is relevant to query or 0 other-
wise. In the experiments, we set K ¼ 50. Besides MAP, we

2. http://press.liacs.nl/mirflickr/
3. http://people.csail.mit.edu/torralba/code/spatialenvelope/
4. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

5. http://www.vlfeat.org/
6. http://www.cs.toronto.edu/	hinton/
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also report precision-recall curve to represent the precision
at different recall level.

We report the results of Text ! Image and Image ! Text
tasks on all three databases. For Text ! Image task, a text
query, which contains the annotated tags of an image, is
input to search images. The text query is firstly represented
by a Fisher vector based on word embeddings. Then, the FV
of text is mapped into a FV in image space. Finally, ham-
ming distance is used to measure the similarities between
the hash code of the converted FV and other hash codes of
images. The top-K images are selected as the results. The
procedure of Image ! Text task is similar as the Text !
Image task. Since the Fisher vector mapping function needs
training data, for each data set, we select 40 percent of the
data to train the mapping function between text and image.
35 percent of the data are chosen as the retrieval database
and the others are formed the query set. All the methods
use the same data splits.

4.3 Results and Discussions

4.3.1 Results on Flickr

Table 1 shows the comparisons of the proposed method
with the state-of-the-art methods on the Flickr MIR data set.

From the results, we observe that the proposed method
SCMH achieves the best performance among all the meth-
ods on both Text ! Image and Image ! Text tasks. LSSH
achieves the second best results in most of the cases. It
approaches the best result when the hash code length is 64.
However, if we increase the hash code length to 128, per-
formances of LSSH and SCM are decrease. On the contrary,
the performances of SCMH with different length of hash
codes are more robust. The main possible reason is that the
performances of SCMH are highly impacted by the map-
ping functions between FVs of different modalities. If we
use the cosine similarity between Fisher vectors to rank can-
didates, the MAP results can reach 0.682 and 0.678 in Text
! Image and Image! Text task respectively.

The precision and recall curves (PR-curves) are plotted in
Fig. 6, where the x-axis denotes the recall and the y-axis
indicates the corresponding precision. From these figures,
we observe that SCMH outperforms the other methods on
all tasks, especially with long hash codes. The performance
of CVH, DCDH, MV-DCDH, LSSH, CMFH, and SCM
decrease much more quickly than SCMH. This also con-
firms that the proposed SCMH better suits the tasks for
cross-media retrieval.

4.3.2 Results on LabelMe

Table 2 compares the relative performances of the different
methods on the LabelMe dataset. Fig. 7 gives the PR-curves
of different methods on the dataset. From the results, we
observe that SCMH achieves better performance than state-
of-the-art methods on all tasks. From analyzing the data, we
find that different tags belonging to the same category may
express similar or related meaning. Since semantic relations
can be readily captured by the proposed method, SCMH
outperforms the other methods. As the length of hash code
increases, the MAP performance of SCMH improves. How-
ever, when the hash code length approaches 128, the per-
formances of most of the methods except SCMH decrease.
Comparing with Flickr dataset, the total number of images
and unique tags are much smaller than it. Hence, the main
possible reason is that longer hash codes encode more
explicit information and thus the inability to capture the

TABLE 1
MAP Comparison on Flickr

Tasks Methods Code Length

32 64 128

Text! Image CVH 0.615 0.613 0.610
DCDH 0.577 0.598 0.611
MV-DCDH 0.600 0.603 0.614
LSSH 0.623 0.634 0.626
CMFH 0.625 0.630 0.632
SCM 0.624 0.606 0.600
SCMH 0.640 0.644 0.645

Image! Text CVH 0.609 0.601 0.602
DCDH 0.610 0.621 0.622
MV-DCDH 0.604 0.614 0.619
LSSH 0.618 0.630 0.617
CMFH 0.619 0.626 0.621
SCM 0.614 0.620 0.623
SCMH 0.643 0.650 0.649

Fig. 6. The precision-recall curves of different hash code generation methods on the Flickr data set.
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semantic level similarities between tags decreases the per-
formance. We also observe that SCMH achieves better per-
formance on the Text ! Image task than the Image ! Text
task. The DCDH, MV-DCDH, LSSH, CMFH, and SCM
methods all behave differently from SCMH, achieving bet-
ter performance on the Image ! Text task. The main reason
is possibly that word level semantic similarities can be bet-
ter captured than keypoints represented by SIFT descriptors
though SCMH. In Image ! Text task, the performance of
SCMH is slightly worse than LSSH when the hash code
length is 32 bits. We think that the main reason is that size
of LabelMe dataset and number of tags occurred in this
dataset are both too small.

From the PR-curves shown in Fig. 7, we also observe that
although SCMH has similar performance as LSSH in Image
! Text task, the precision of SCMH decreases much more
slowly. This means that SCMH can achieve better results
when the user needs more candidates. We also observe
from the figure that the improvements of SCMH on the
Image ! Text task are relatively marginal compared to
those on the Text! Image tasks at all recall levels. This also
confirms the phenomenon described above.

4.3.3 Results on NUS-WIDE

The results of different methods on the NUS-WIDE dataset
are shown in Table 3. The corresponding PR-curves of
them are given in the Fig. 8. From the results, we observe
that SCMH achieves significantly better performance than
state-of-the-art methods on all tasks. The relative improve-
ments of SCMH over the second best results are 10.0 and
18.5 percent on the Text ! Image and Image ! Text task
respectively. Comparing with the results of SCMH on
LabelMe and Flickr dataset, the improvement of SCMH on
NUS-WIDE is more significant. The main possible reason
is that the number of tags based on their frequency we
used in this dataset is bigger than LabelMe and Flickr.
There are only a total of 245 unique tags which occur more
than three times in the whole LabelMe dataset. For com-
paring with other methods, we selected top 500 most
frequent tags in Flickr data set. Since NUS-WIDE is a more
practical dataset, which contains more unique tags, we
propose to use the top 1,000 most frequent tags. Hence, the
weakness of the other methods in capturing the semantic
level similarities between tags decreases the performance.

TABLE 2
MAP Comparison on LabelMe

Tasks Methods Code Length

32 64 128

Text! Image CVH 0.400 0.370 0.349
DCDH 0.410 0.449 0.424
MV-DCDH 0.437 0.476 0.448
LSSH 0.665 0.695 0.671
CMFH 0.589 0.601 0.610
SCM 0.613 0.621 0.615
SCMH 0.694 0.701 0.714

Image! Text CVH 0.343 0.342 0.338
DCDH 0.416 0.466 0.428
MV-DCDH 0.448 0.480 0.455
LSSH 0.670 0.673 0.687
CMFH 0.636 0.644 0.652
SCM 0.622 0.630 0.636
SCMH 0.662 0.676 0.688

Fig. 7. The precision-recall curves of different hash code generation methods on the LabelMe data set.

TABLE 3
MAP Comparison on NUS-WIDE

Tasks Methods Code Length

32 64 128

Text! Image CVH 0.435 0.426 0.418
DCDH 0.468 0.486 0.484
MV-DCDH 0.479 0.487 0.484
LSSH 0.504 0.509 0.504
CMFH 0.504 0.510 0.508
SCM 0.526 0.528 0.530
SCMH 0.552 0.560 0.556

Image! Text CVH 0.437 0.426 0.421
DCDH 0.460 0.476 0.481
MV-DCDH 0.462 0.474 0.478
LSSH 0.504 0.501 0.498
CMFH 0.512 0.514 0.511
SCM 0.531 0.539 0.541
SCMH 0.590 0.597 0.593

ZHANG ET AL.: A MIXED GENERATIVE-DISCRIMINATIVE BASED HASHING METHOD 9
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It can, in some degree, demonstrate that the proposed
method SCMH is more appropriate for practical environ-
ment. From the PR-curves illustrated in Fig. 8, we observe
the similar phenomenon as LabelMe and Flickr that the
precision of SCMH decreases much more slowly. When
recall achieves 20 percent, the relative improvement of
SCMH over LSSH is more than 28.2 percent on Image !
Text task.

To further analyze the results given by different meth-
ods, we calculate the cosine similarities between textual
descriptions of queries and correct results in the top 50 lists
on the Image ! Text. Fig. 9 shows the distribution of cosine
similarities. In the figure, x-axis denotes the ranges of cosine
similarity the y-axis the number of correct results in the
range. From the results, we can see that SCMH can find
more correct results whose cosine similarity with corre-
sponding query are less 10 percent. It can in some degree
demonstrates the effectiveness of SCMH in capturing the
semantic textual similarities.

In summary, the evaluation results on three data sets
demonstrate conclusively that the proposed SCMH method
is superior to the state-of-the-art methods when measured

using commonly accepted performance metrics on data sets
that are commonly used for evaluating cross-media retrieval.

4.3.4 Parameter Sensitivity

To analysis the sensitivity of the hyper-parameters of
SCMH, we conduct several empirical experiments on all the
datasets. For easy comparison with previous methods, we
set the hash code length to be 64 bits. Fig. 10 shows the per-
formances of SCHM with different percentages of training
data. In the two figures, the x-axis denotes the percentages
of data used for training and the y-axis denotes the MAP
performance. The data used for constructing retrieval set
and query set are same as we used in previous section.
From the figures, we observe that as the number of training
data increases, the MAP performances of SCMH conse-
quently improve on all data sets. When the percentages of
training data are over 30 percent of the whole dataset, the
MAP performances increase slowly. The main reason may
possibly be that the number of categories or concepts
included in these data sets are small. However, on the other
side, we can say that the proposed method SCMH can
achieve acceptable results with a few of ground truths.
Hence, it can be easily adopted for achieving other data sets.

Since the training process of mapping function is solved
by an iterative procedure, we also evaluate its convergency
property. Fig. 11 shows the MAP performances of SCMH
on Image ! Text and Text ! Image tasks. In the two fig-
ures, the x-axis denotes the number of iterations for opti-
mizing the mapping function and the y-axis denotes the

Fig. 8. The precision-recall curves of different hash code generation methods on the NUS-WIDE data set.

Fig. 9. Distribution of cosine similarities between queries and results on
the Image! Text on NUS-WIDE dataset.

Fig. 10. Effects of training size on MAP performance on the Image !
Text and Text! Image tasks.
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MAP performance. From these figures, we observe that
SCMH can coverage with less than 10 iterations on all three
data sets. It means that SCMH can achieve stable and supe-
rior performance under a wide range of parameter values.
A strange point occurs on the LableMe dataset on Image !
Text task. The result achieve the best with three iterations.
The main possible reason is that the size of LabelMe is rela-
tively small comparing to Flickr and NUS-WIDE. Hence,
the results may more sensitive on the LabelMe dataset.

4.3.5 Efficiency Evaluation

Due to the requirement of processing huge amounts of data,
efficiency is also an important issue. In this work, we com-
pare the running time of the proposed approach with other
hashing learning methods. Although the offline stage of the
proposed framework requires massive computation cost,
the computational complexity of online stage is small or
comparable to other hashing methods.

Fig. 12 shows the efficiency comparison of different hash-
ing methods. We implement the all methods to run on sin-
gle thread in the same machine, which contains Xeon quad
core CPUs (2.53 GHz) and 32 GB RAM. All the methods
take the text query as inputs. The processing time is calcu-
lated from receiving the inputs to generating hash codes.
Since in practical usages queries are usually out-of-sample
ones, we compare the proposed method with Spectral Hash
and Semantic hash. For processing out-of-sample extension
of spectral hashing, we propose to use the Nystrom method
[64] to do it. From the results, we can observe that the
computational complexity of the proposed method is com-
parable with and state-of-the hashing methods. Comparing
to the methods based on the matrix factorization, the pro-
posed method is much more efficient. In this work, we use
semantic hash to generate hash codes of FVs. Hence, addi-
tional processing time is required to perform the calucua-
tion. However, if we use less complex hashing method, the
efficiency can be further improved. It demonstrates that the
proposed method is applicable for large scale applications.

5 CONCLUSIONS

In this work, we propose a novel hashing method, SCMH, to
perform the near-duplicate detection and cross media
retrieval task. We propose to use a set of word embeddings
to represent textual information. Fisher kernel framework is
incorporated to represent both textual and visual informa-
tion with fixed length vectors. For mapping the Fisher
vectors of different modalities, a deep belief network is

proposed to perform the task. We evaluate the proposed
method SCMH on three commonly used data sets. SCMH
achieves better results than state-of-the-art methodswith dif-
ferent the lengths of hash codes. In NUS-WIDE data set, the
relative improvements of SCMH over LSSH, which achieves
the best results in these datasets, are 10.0 and 18.5 percent on
the Text ! Image and Image ! Text tasks respectively.
Experimental results demonstrate the effectiveness of the
proposedmethod on the cross-media retrieval task.

ACKNOWLEDGMENTS

This work was partially funded by National Natural Science
Foundation of China (No. 61532011, 61473092, and
61472088), the National High Technology Research and
Development Program of China (No. 2015AA015408), and
Shanghai Science and Technology Development Funds
(13dz226020013511504300). J. Qian is the corresponding
author.

REFERENCES

[1] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization
hashing for multimodal data,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2014, pp. 2083–2090.

[2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quan-
tization: A procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 12, pp. 2916–2929, Dec. 2013.

[3] Y. Pan, T. Yao, T. Mei, H. Li, C.-W. Ngo, and Y. Rui, “Click-
through-based cross-view learning for image search,” in Proc. 37th
Int. ACMSIGIR Conf. Res. Develop. Inf. Retrieval, 2014, pp. 717–726.

[4] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media
hashing for large-scale retrieval from heterogeneous data
sources,” in Proc. Int. Conf. Manage. Data, 2013, pp. 785–796.

[5] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao,
“Parametric local multimodal hashing for cross-view similarity
search,” in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013, pp. 2754–2760.

[6] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hash-
ing with semantic correlation maximization,” in Proc. 28th AAAI
Conf. Artif. Intell., 2014, pp. 2177–2183.

[7] Y. Zhuang, Y. Yang, F. Wu, and Y. Pan, “Manifold learning based
cross-media retrieval: A solution to media object complementary
nature,” J. VLSI Signal Process. Syst. Signal, Image Video Technol.,
vol. 46, pp. 153–164, 2007.

[8] F. Wu, H. Zhang, and Y. Zhuang, “Learning semantic correlations
for cross-media retrieval,” in Proc. IEEE Int. Conf. Image Process.,
2006, pp. 1465–1468.

Fig. 11. Effects of the number of iterations on MAP performance on the
Image! Text and Text! Image tasks.

Fig. 12. The efficiency comparison of different hashing methods.

ZHANG ET AL.: A MIXED GENERATIVE-DISCRIMINATIVE BASED HASHING METHOD 11



IE
EE

Pr
oo

f

[9] Y. Yang, Y.-T. Zhuang, F. Wu, and Y.-H. Pan, “Harmonizing hier-
archical manifolds for multimedia document semantics under-
standing and cross-media retrieval,” IEEE Trans. Multimedia,
vol. 10, no. 3, pp. 437–446, Apr. 2008.

[10] E. P. Xing, R. Yan, and A. G. Hauptmann, “Mining associated text
and images with dual-wing harmoniums,” in Proc. 21st Conf.
Uncertainty Artif. Intell., 2005, pp. 633–641.

[11] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proc. 28th Int. Conf. Mach. Learn.,
2011, pp. 689–696.

[12] N. Srivastava and R. Salakhutdinov, “Multimodal learning with
deep boltzmann machines,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 2222–2230.

[13] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for
cross-modal similarity search,” in Proc. 37th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2014, pp. 415–424.

[14] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang,
“Discriminative coupled dictionary hashing for fast cross-media
retrieval,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 395–404.

[15] S. Kumar and R. Udupa, “Learning hash functions for cross-view
similarity search,” in Proc. Int. Joint Conf. Artif. Intell., 2011,
pp. 1360–1365.

[16] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G.
Wolfman, and E. Ruppin, “Placing search in context: The concept
revisited,” in Proc. 10th Int. Conf. World Wide Web, 2001, pp. 406–
414.

[17] Q. Zhang, J. Kang, J. Qian, and X. Huang, “Continuous word
embeddings for detecting local text reuses at the semantic level,”
in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2014,
pp. 797–806.

[18] T. Jaakkola, D. Haussleret al., “Exploiting generative models in
discriminative classifiers,” in Proc. Adv. Neural Inf. Process. Syst.,
1999, pp. 487–493.

[19] D. G. Lowe, “Object recognition from local scale-invariant
features,” in Proc. Int. Conf. Comput. Vis., 1999, p. 1150.

[20] X. Wang, Y. Liu, D. Wang, and F. Wu, “Cross-media topic mining
on wikipedia,” in Proc. 21st ACM Int. Conf. Multimedia, 2013,
pp. 689–692.

[21] H. Zhang, J. Yuan, X. Gao, and Z. Chen, “Boosting cross-media
retrieval via visual-auditory feature analysis and relevance
feedback,” in Proc. ACM Int. Conf. Multimedia, 2014, pp. 953–956.

[22] P. Daras, S. Manolopoulou, and A. Axenopoulos, “Search and
retrieval of rich media objects supporting multiple multimodal
queries,” IEEE Trans. Multimedia, vol. 14, no. 3, pp. 734–746, Jun.
2012.

[23] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Boston, MA, USA, Jun. 2015, pp. 3128–3137.

[24] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proc. SEQUENCES, 1997, p. 21.

[25] A. Z. Broder, “Identifying and filtering near-duplicate doc-
uments,” in Proc. Combinatorial Pattern Matching, 2000, pp. 1–10.

[26] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: Robust and
efficient near duplicate detection in large web collections,” in
Proc. 31st Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2008, pp. 563–570.

[27] A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe,
“Collection statistics for fast duplicate document detection,” ACM
Trans. Inf. Syst., vol. 20, no. 2, pp. 171–191, 2002.

[28] A. Ko»cz, A. Chowdhury, and J. Alspector, “Improved robustness
of signature-based near-replica detection via lexicon random-
ization,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2004, pp. 605–610.

[29] J. Seo and W. B. Croft, “Local text reuse detection,” in Proc. 31st
Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2008,
pp. 571–578.

[30] Q. Zhang, Y. Zhang, H. Yu, and X. Huang, “Efficient partial-
duplicate detection based on sequence matching,” in Proc. 31st
Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2010,
pp. 571–578.

[31] J. W. Kim, K. S. Candan, and J. Tatemura, “Efficient overlap and
content reuse detection in blogs and online news articles,” in Proc.
Int. Conf. World Wide Web, 2009, pp. 571–578.

[32] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular quanti-
zation-based binary codes for fast similarity search,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1196–1204.

[33] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[34] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1042–1050.

[35] K. Grauman and R. Fergus, “Learning binary hash codes for large-
scale image search,” in Proc. Mach. Learn. Comput. Vis., 2013,
pp. 49–87.

[36] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
Adv. Neural Inf. Process. Syst., 2008.

[37] Y. Zhen and D.-Y. Yeung, “A probabilistic model for multimodal
hash function learning,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 940–948.

[38] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: The state-of-the-art,” Sci. China Inf. Sci., vol. 58, no. 1,
pp. 1–38, 2015.

[39] M.Norouzi andD. Fleet, “Minimal loss hashing for compact binary
codes,” in Proc. 28th Int. Conf.Mach. Learn., 2011, pp. 353–360.

[40] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2010, pp. 18–25.

[41] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “Joint learning
of words and meaning representations for open-text semantic
parsing,” in Proc. Int. Conf. Artif. Intell. Statist., 2012, pp. 127–
135.

[42] J. L. Elman, “Distributed representations, simple recurrent net-
works, and grammatical structure,” Mach. Learn., vol. 7, pp. 195–
225, 1991.

[43] G. E. Hinton, “Learning distributed representations of concepts,”
in Proc. 8th Annu. Conf. Cognitive Sci. Soc., 1986, pp. 1–12.

[44] G. Hinton and R. Salakhutdinov, “Discovering binary codes for
documents by learning deep generative models,” Topics Cognitive
Sci., vol. 3, pp. 74–91, 2010.

[45] T. Mikolov, M. Karafi�at, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc.
INTERSPEECH, 2010, pp. 1045–1048.

[46] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Ng,
“Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 801–809.

[47] J. Turian, L. Ratinov, and Y. Bengio, “Word representations:
A simple and general method for semi-supervised learning,” in
Proc. 48th Annu. Meeting Assoc. Comput. Ling., 2010, pp. 384–394.

[48] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., vol. 3,
pp. 1137–1155, 2003.

[49] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C.
Potts, “Learning word vectors for sentiment analysis,” in Proc.
49th Annu. Meeting Assoc. Comput. Ling.: Human Lang. Technol.-
Vol. 1, 2011, pp. 142–150.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[51] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2014, pp. 580–587.

[52] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierar-
chical representations,” in Proc. 26th Annu. Int. Conf. Mach. Learn.,
2009, pp. 609–616.

[53] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional
learning of spatio-temporal features,” in Proc. Comput. Vis., 2010,
pp. 140–153.

[54] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” in Proc. Workshop
ICLR, 2013, pp. 1–2.

[55] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving
word representations via global context and multiple word proto-
types,” in Proc. 50th Annu. Meeting Assoc. Comput. Ling., 2012,
pp. 873–882.

[56] J. Jost and J. Jost, Riemannian Geometry and Geometric Analysis. New
York, NY, USA: Springer, 2008.

[57] R. A. Redner and H. F. Walker, “Mixture densities, maximum
likelihood and the em algorithm,” SIAM Rev., vol. 26, no. 2,
pp. 195–239, 1984.

[58] S. Amari and H. Nagaoka,Methods of Information Geometry, Ameri-
can Mathematical Soc., 2000.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

[59] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-
supervised learning for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2010, pp. 902–909.

[60] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput.
Vis., vol. 42, pp. 145–175, 2001.

[61] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng,
“NUS-wide: A real-world web image database from national uni-
versity of singapore,” in Proc. ACM Conf. Image Video Retrieval,
pp. 48:1–48:9.

[62] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[63] H. J�egou, F. Perronnin, M. Douze, J. S�anchez, P. P�erez, and
C. Schmid, “Aggregating local image descriptors into compact
codes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9,
pp. 1704–1716, Sep. 2011.

[64] Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent,
and M. Ouimet, “Learning eigenfunctions links spectral embed-
ding and kernel PCA,” Neural Comput., vol. 16, pp. 2197–2219,
2004.

Qi Zhang received the PhD degree in computer
science from Fudan University. He is an associ-
ate professor of computer science at Fudan Uni-
versity, Shanghai, China. His research interests
include natural language processing and informa-
tion retrieval.

Yang Wang received the bachelor’s degree in
computer science from Xidian University. He is
currently working toward the master’s degree at
Fudan University. His research interests include
information retrieval.

Jin Qian received the master’s degree in com-
puter science from Shandong University. He is
currently working toward the PhD degree at
Fudan University. His research interests include
data mining.

Xuanjing Huang received the PhD degree in
computer science from Fudan University. She is
a professor of computer science at Fudan Univer-
sity, Shanghai, China. Her research interests
include natural language processing and informa-
tion retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: A MIXED GENERATIVE-DISCRIMINATIVE BASED HASHING METHOD 13


