
ONE2SET: Generating Diverse Keyphrases as a Set

Jiacheng Ye1, Tao Gui2∗, Yichao Luo1, Yige Xu1 and Qi Zhang1∗

1School of Computer Science, Fudan University
2Institute of Modern Languages and Linguistics, Fudan University

{yejc19, tgui16, ycluo18, ygxu18, qz}@fudan.edu.cn

Abstract

Recently, the sequence-to-sequence models
have made remarkable progress on the task of
keyphrase generation (KG) by concatenating
multiple keyphrases in a predefined order as
a target sequence during training. However,
the keyphrases are inherently an unordered
set rather than an ordered sequence. Imposing
a predefined order will introduce wrong bias
during training, which can highly penalize
shifts in the order between keyphrases. In this
work, we propose a new training paradigm
ONE2SET without predefining an order
to concatenate the keyphrases. To fit this
paradigm, we propose a novel model that
utilizes a fixed set of learned control codes
as conditions to generate a set of keyphrases
in parallel. To solve the problem that there is
no correspondence between each prediction
and target during training, we propose a
K-step target assignment mechanism via
bipartite matching, which greatly increases
the diversity and reduces the duplication ratio
of generated keyphrases. The experimental
results on multiple benchmarks demonstrate
that our approach significantly outperforms
the state-of-the-art methods.

1 Introduction

Keyphrase generation (KG) aims to generate of a
set of keyphrases that expresses the high-level se-
mantic meaning of a document. These keyphrases
can be further categorized into present keyphrases
that appear in the document and absent keyphrases
that do not. Meng et al. (2017) proposed a
sequence-to-sequence (Seq2Seq) model with a
copy mechanism (Gu et al., 2016) to predict both
present and absent keyphrases. However, the
model needs beam search during inference to
overgenerate multiple keyphrases, which cannot
determine the dynamic number of keyphrases. To

∗∗ Corresponding authors.

 deep learning <sep> topic model <eos>

 topic model <sep> deep learning <eos>

❌ ❌ ❌ ❌

 deep learning <eos> topic model <eos>

 topic model <eos> deep learning <eos>

(a)

(b) ONE2SET

ONE2SEQ

Figure 1: An example of ground-truth keyphrases
(upper) and predictions (lower) under ONE2SEQ and
ONE2SET training paradigm. For the ONE2SEQ
training paradigm, although the predictions are correct
in each keyphrase, they will still be considered wrong
due to the shift in keyphrase order, and the model will
receive a large penalty.

address this, Yuan et al. (2020) proposed the
ONE2SEQ training paradigm where each source
text corresponds to a sequence of keyphrases that
are concatenated with a delimiter 〈sep〉 and a
terminator 〈eos〉. As keyphrases must be ordered
before being concatenated, Yuan et al. (2020)
sorted the present keyphrases by their order of the
first occurrence in the source text and appended
the absent keyphrases to the end. During inference,
the decoding process terminates when generating
〈eos〉, and the final keyphrase predictions are
obtained after splitting the sequence by 〈sep〉.
Thus, a model trained with ONE2SEQ paradigm
can generate a sequence of multiple keyphrases
with dynamic numbers as well as considering the
dependency between keyphrases.

However, as the keyphrases are inherently an
unordered set rather than an ordered sequence,
imposing a predefined order usually leads to the fol-
lowing intractable problems. First, the predefined
order will give wrong bias during training, which

can highly penalize shifts in the order between
keyphrases. As shown in Figure 1 (a), the model
makes correct predictions in each keyphrase but can
still receive a large loss during training. Second,
this increases the difficulty of model training. For
example, the absent keyphrases are appended to the
end in an author-defined order in Yuan et al. (2020),
however, different authors can have various sorting
bases, which makes it difficult for the model to
learn a unified pattern. Third, the model is highly
sensitive to the predefined order, as shown in Meng
et al. (2019), and can suffer from error propagation
during inference when previously having generated
keyphrases with an incorrect order. Lately, Chan
et al. (2019) proposed a reinforcement learning-
based fine-tuning method, which fine-tunes the
pre-trained models with metric-based rewards (i.e.,
recall and F1) for generating more sufficient and
accurate keyphrases. However, this method can
alleviate the impact of the order problems when
fine-tuning but needs to be pre-trained under the
ONE2SEQ paradigm to initialize the model, which
can still introduce wrong biases.

To address this problem, we propose a new train-
ing paradigm ONE2SET where the ground-truth
target is a set rather than a keyphrase-concatenated
sequence. However, the vanilla Seq2Seq model can
generate a sequence but not a set. Hence, we intro-
duce a set prediction model that adopts Transformer
(Vaswani et al., 2017) as the main architecture
together with a fixed set of learned control codes as
additional decoder inputs to perform controllable
generation. For each code, the model generates a
corresponding keyphrase for the source document
or a special ∅ token that represents the meaning
of “no corresponding keyphrase”. During training,
the cross-entropy loss cannot be directly used since
we do not know the correspondence between each
prediction and target. Hence, we introduce a
K-step target assignment mechanism, where we
first auto-regressively generate K words for each
code and then assign targets via bipartite matching
based on the predicted words. After that, we can
train each code using teacher forcing as before.
Compared with the previous models, the proposed
method has the following advantages: (a) there is
no need to predefine an order to concatenate the
keyphrases, thus the model will not be affected by
the wrong biases in the whole training stage; and (b)
the bipartite matching forces unique predictions for
each code, which greatly reduces the duplication

ratio and increases the diversity of predictions.
We summarize our main contributions as follows:

(1) we propose a new training paradigm ONE2SET

without predefining an order to concatenate the
keyphrases; (2) we propose a novel set prediction
model that can generate a set of diverse keyphrases
in parallel and a dynamic target assignment mech-
anism to solve the intractable training problem
under the ONE2SET paradigm; (3) our method
consistently outperforms all the state-of-the-art
methods and greatly reduces the duplication ratio.
Our codes are publicly available at Github1.

2 Related Work

2.1 Keyphrase Extraction
Existing approaches for keyphrase prediction can
be broadly divided into extraction and generation
methods. Early work mostly focuses on the
keyphrase extraction task, and a two-step strategy
is typically designed (Hulth, 2003; Mihalcea and
Tarau, 2004; Nguyen and Kan, 2007; Wan and
Xiao, 2008). First, they extract a large set of
candidate phrases by hand-crafted rules (Mihalcea
and Tarau, 2004; Medelyan et al., 2009; Liu
et al., 2011). Then, these candidates are scored
and reranked based on unsupervised methods
(Mihalcea and Tarau, 2004; Wan and Xiao, 2008)
or supervised methods (Hulth, 2003; Nguyen and
Kan, 2007). Other extractive approaches utilize
neural-based sequence labeling methods (Zhang
et al., 2016; Gollapalli et al., 2017).

2.2 Keyphrase Generation
Compared to extractive approaches, generative
ones have the ability to consider the absent
keyphrase prediction. Meng et al. (2017) proposed
a generative model CopyRNN, which employs
a encoder-decoder framework (Sutskever et al.,
2014) with attention (Bahdanau et al., 2015) and
copy mechanisms (Gu et al., 2016). Many works
are proposed based on the CopyRNN architecture
(Chen et al., 2018; Zhao and Zhang, 2019; Chen
et al., 2019b,a).

In previous CopyRNN based works, each source
text corresponds to a single target keyphrase. Thus,
the model needs beam search during inference to
overgenerate multiple keyphrases, which cannot
determine the dynamic number of keyphrases
and consider the inter-relation among keyphrases.
To this end, Yuan et al. (2020) proposed an

1https://github.com/jiacheng-ye/kg one2set

Transformer
Encoder Transformer Decoder

1

BOS
+

1

+
2

+

1

+
1

BOS
+

4

+
2

deep
+

4

+

... 1

BOS
+

5

+
2

neural
+

5

+
1

BOS
+

8

+
2

neural
+

8

+

...

topic

topic model deep learning... neural model neural model...

... ...

Set of Present Keyphrase Set of Absent Keyphrase
deep learning topic model neural network vector quantization

Source
Document

Position

Control Code

K-step Target
Assignment

Token

? ? ? ?

Figure 2: Architecture of SETTRANS model with N learned control codes as input conditions. A K-step target
assignment mechanism is used during training, where we first predict K words for each code, and then find an
optimal allocation among the predictions and targets. In the figure, N = 8 and K = 2 are used.

ONE2SEQ training paradigm where each source
text corresponds to a sequence of concatenated
keyphrases. Thus, the model can capture the
contextual information between the keyphrases
as well as determines the dynamic number of
keyphrases for different source texts. The recent
works (Chan et al., 2019; Chen et al., 2020; Swami-
nathan et al., 2020) mostly follow the ONE2SEQ

training paradigm. Chan et al. (2019) proposed an
RL-based fine-tuning method using F1 and Recall
metrics as rewards. Swaminathan et al. (2020)
proposed an RL-based fine-tuning method using a
discriminator to produce rewards. All the above
models need to be trained or pre-trained under
the ONE2SEQ paradigm. As keyphrases must
be ordered before concatenating and keyphrases
are inherently an unordered set, the model can be
trained with wrong signal. Our ONE2SET training
paradigm aims to solve this problem.

3 Methodology

This paper proposes a new training paradigm
ONE2SET for keyphrase generation. A set predic-
tion model based on Transformer (SETTRANS) is
proposed to fit this paradigm, as shown in Figure 2.
Given a fixed set of learned control codes as input
conditions, the model generates a keyphrase or a
special ∅ token for each code in parallel. During
training, a K-step target assignment mechanism
is proposed to dynamically determine the target
corresponding to each code. The main idea is that
the model first freely predicts K steps without any
supervision to see what keyphrase each code can
roughly generate, and then use bipartite matching
to find the optimal allocation based on the model’s
conjecture and target. Given the correspondence of

each code and target, a separate set loss is then used
to correct the model’s conjecture, where half of the
codes are trained to predict the present keyphrase
set and the others are trained to predict the absent
keyphrase set.

3.1 The ONE2SET Training Paradigm

We first formally describe the keyphrase generation
task as follows. Given a document x, it’s aimed
to predict a set of keyphrases Y = {yi}i=1,...,|Y|,
where |Y| is the number of keyphrases. To solve
the KG task, previous works typically adopted an
ONE2ONE training paradigm (Meng et al., 2017)
or ONE2SEQ training paradigm (Yuan et al., 2020).
The difference between the two training paradigms
is that the form of training samples is different.
Specifically, in the ONE2ONE training paradigm,
each original sample pair (x,Y) is divided into
multiple pairs {(x,yi)}i=1,...,|Y| to perform train-
ing independently. In the ONE2SEQ training
paradigm, each original sample pair is processed as
(x, f(Y)), where f(Y) is a sequence of keyphrases
after the reordering and concatenating operation.

To solve the wrong bias problem caused by
the ONE2SEQ training paradigm, we propose
the ONE2SET training paradigm, where each
original sample pair is kept still as (x,Y). Hence,
the sample used in training is consistent with
the original sample, which avoids the intractable
problem introduced by the additional processing
(i.e., dividing or concatenating).

3.2 The SETTRANS Model

We adopt the Transformer (Vaswani et al., 2017) as
the backbone encoder-decoder framework. How-
ever, the vanilla Transformer can only generate a se-

quence but not a set. To predict a set of keyphrases,
we propose SETTRANS model that utilizes a set of
learned control codes as additional decoder inputs.
By performing generation conditioned on each
control code, we can generate a set of keyphrases in
parallel. To decide suitable numbers of keyphrases
for different given documents, we fix the total
length of the control codes to a sufficient number
N , and introduce a special ∅ token that represents
the meaning of “no corresponding keyphrase”.
Hence, we can determine the appropriate number
of keyphrases for an input document after removing
all the ∅ tokens from the N predictions.

Formally, the decoder input at time step t for
control code n is defined as follows:

dnt = ewynt−1
+ ept + cn, (1)

where ewynt−1
is the embedding of word ynt−1, ept

is the t-th sinusoid positional embedding as in
(Vaswani et al., 2017) and cn is the n-th learned
control code embedding. The decoder outputs the
predictive distribution pnt , which is used to get
the next word ynt . As some keyphrases contain
words that do not exist in the predefined vocabulary
but appear in the input document, we also employ
a copy mechanism (See et al., 2017), which is
generally adopted for many previous KG works
(Meng et al., 2017; Chan et al., 2019; Chen et al.,
2020; Yuan et al., 2020).

3.3 Training

The main difficulty of training under the ONE2SET

paradigm is that the correspondence between each
prediction and ground-truth keyphrase is unknown,
so that the cross-entropy loss cannot be directly
used. Hence, we introduce a K-step target as-
signment mechanism to assign the ground-truth
keyphrase for each prediction, and a separate set
loss to train the model in an end-to-end way.

3.3.1 K-step Target Assignment
We first generate K words for each control code
and collect the corresponding predictive probability
distributions of each step. Formally, we denote
P = {Pn}n=1,...,N , where Pn = {pnt }t=1,...,K

and pnt is the predictive distribution at time step t
for control code n.

Then, we find a bipartite matching between the
ground-truth keyphrases and predictions. Assum-
ing the predefined number of control codes N is
larger than the number of ground-truth keyphrases,

we consider the ground-truth keyphrases also as
a set of size N padded with ∅. Note that the
bipartite matching enforces permutation-invariance,
and guarantees that each target element has a
unique match. Thus, it reduces the duplication ratio
of predictions. Specifically, as shown in Figure
2, both the fifth and eighth control code predict
the same keyphrase “neural model”, but one of
them is assigned with ∅. The eighth code can
perceive that this keyphrase has been generated by
another code. Hence, the control codes can learn
their mutual dependency during training and not
generate duplicated keyphrases.

Formally, to find a bipartite matching between
sets of ground-truth keyphrases and predictions, we
search for a permutation π̂ with the lowest cost:

π̂ = arg min
π∈Π(N)

N∑
n=1

Cmatch

(
yn,Pπ(n)

)
, (2)

where Π(N) is the space of all N -length permuta-
tions, Cmatch

(
yn,Pπ(n)

)
is a pair-wise matching

cost between the ground truth yn and distributions
of a prediction sequence with index π(n). This
optimal assignment is computed efficiently with the
Hungarian algorithm (Kuhn, 1955). The matching
cost takes into account the class predictions, which
can be defined as follows:

Cmatch

(
yn,Pπ(n)

)
= −

s∑
t=1

1{ynt 6=∅}p
π(n)
t (ynt) ,

(3)
where s = min(|yn|,K) is the minimum shared
length between the target and predicted sequence,
p
π(n)
t (ynt) denotes the probability of word ynt in

p
π(n)
t , and we ignore the score from matching

predictions with ∅, which ensures that valid targets
(i.e., non-∅ targets) can be allocated to predictions
with as higher predictive probability as possible.

3.3.2 Separate Set Loss
Given the correspondence between each code and
target, we can train the model to predict a single
target set, which is defined as follows:

L(θ) = −
N∑
n=1

|yn|∑
t=1

logp
π̂(n)
t (ynt) , (4)

where p
π̂(n)
t is the predictive probability distribu-

tion using teacher forcing. However, predicting
present and absent keyphrases requires the model
to have different capabilities, we propose a separate

Dataset #Samples Avg. #KP Avg. |KP| % of Abs.KP
Inspec 500 9.79 2.48 26.42
NUS 211 10.81 2.22 45.36
Krapivin 400 5.83 2.21 44.33
SemEval 100 14.43 2.38 55.61
KP20k 20,000 5.26 2.04 37.23

Table 1: Statistics of the testing set on five datasets.
#KP: number of keyphrases. |KP|: length of keyphrase.
Abs.KP: absent keyphrases.

set loss to flexibly take this bias into account in a
unified model. Specifically, we first separate the
control codes into two fixed sets with equal size of
N/2, which is denoted as C1 and C2, and the target
keyphrase set Y into present target keyphrase set
Ypre and absent target keyphrase set Yabs. Finally,
the bipartite matching is performed on the two
sets separately, namely, we find a permutation π̂pre

using Ypre and predictions from C1, and π̂abs using
Yabs and predictions from C2. Thus, we can modify
the final loss in Equal 4 as follows:

L(θ) = −(

N/2∑
n=1

|yn|∑
t=1

logp
π̂pre(n)
t (ynt)

+
N∑

n=N/2+1

|yn|∑
t=1

logp
π̂abs(n)
t (ynt)).

(5)

In practice, we down-weight the log-probability
term when ynt = ∅ by scale factors λpre and λabs
for present keyphrase set and absent keyphrase set
to account for the class imbalance.

4 Experimental Setup

4.1 Datasets

We conduct our experiments on five scientific arti-
cle datasets, including Inspec (Hulth, 2003), NUS
(Nguyen and Kan, 2007), Krapivin (Krapivin et al.,
2009), SemEval (Kim et al., 2010) and KP20k
(Meng et al., 2017). Each sample from these
datasets consists of a title, an abstract, and some
keyphrases. Following previous works (Meng
et al., 2017; Chen et al., 2019b,a; Yuan et al.,
2020), we concatenate the title and abstract as a
source document. We use the largest dataset (i.e.,
KP20k) to train all the models. After preprocessing
(i.e., lowercasing, replacing all the digits with the
symbol 〈digit〉 and removing the duplicated data),
the final KP20k dataset contains 509,818 samples
for training, 20,000 for validation, and 20,000 for
testing. The dataset statistics are shown in Table 1.

4.2 Baselines

We focus on the comparisons with the following
state-of-the-art methods as our baselines:
• catSeq (Yuan et al., 2020). The RNN-based

seq2seq model with copy mechanism trained
under ONE2SEQ paradigm.
• catSeqTG (Chen et al., 2019b). An extension

of catSeq with additional title encoding and
cross-attention.
• catSeqTG-2RF1 (Chan et al., 2019). An

extension of catSeqTG with RL-based fine-
tuning using F1 and Recall metrics as rewards.
• GANMR (Swaminathan et al., 2020). An

extension of catSeq with RL-based fine-tuning
using a discriminator to produce rewards.
• ExHiRD-h (Chen et al., 2020). An extension

of catSeq with a hierarchical decoding method
and an exclusion mechanism to avoid generat-
ing duplicated keyphrases.

In this paper, we propose two Transformer-based
models that are denoted as follows:
• Transformer. A Transformer-based

model with copy mechanism trained under
ONE2SEQ paradigm.
• SETTRANS. An extension of Transformer

with additional control codes trained under
ONE2SET paradigm.

4.3 Implementation Details

Following previous works (Chan et al., 2019; Chen
et al., 2020; Yuan et al., 2020), when training under
the ONE2SEQ paradigm, the target keyphrase
sequence is the concatenation of present and absent
keyphrases, with the present keyphrases are sorted
according to the orders of their first occurrences
in the document and the absent keyphrase kept in
their original order. We use a Transformer structure
similar to Vaswani et al. (2017), with six layers
and eight self-attention heads, 2048 dimensions for
hidden states. In the training stage, we choose the
top 50,002 frequent words to form the predefined
vocabulary and set the embedding dimension to
512. We use the Adam optimization algorithm
(Kingma and Ba, 2015) with a learning rate of
0.0001, and a batch size of 12. During testing, we
use greedy search as the decoding algorithm. We
set the number of control codes to 20 as we find
it covers 99.5% of the samples in the validation
set. We use a number of two for target assignment
steps K based on the average keyphrase length on
the validation set, a factor of 0.2 and 0.1 for λpre

Model Inspec NUS Krapivin SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq (Yuan et al., 2020) 0.225 0.262 0.323 0.397 0.269 0.354 0.242 0.283 0.291 0.367
catSeqTG (Chen et al., 2019b) 0.229 0.270 0.325 0.393 0.282 0.366 0.246 0.290 0.292 0.366
catSeqTG-2RF1 (Chan et al., 2019) 0.253 0.301 0.375 0.433 0.300 0.369 0.287 0.329 0.321 0.386
GANMR (Swaminathan et al., 2020) 0.258 0.299 0.348 0.417 0.288 0.369 - - 0.303 0.378
ExHiRD-h (Chen et al., 2020) 0.253 0.291 - - 0.286 0.347 0.284 0.335 0.311 0.374
Transformer (ONE2SEQ) 0.2815 0.3256 0.3707 0.41910 0.3158 0.3655 0.28714 0.32515 0.3321 0.3771

SETTRANS (ONE2SET) 0.2853 0.3243 0.40612 0.4507 0.32612 0.36412 0.33120 0.35713 0.3585 0.3924

Table 2: Present keyphrases prediction results of all models. The best results are bold. The subscript represents the
corresponding standard deviation (e.g., 0.3924 indicates 0.392±0.004).

Model Inspec NUS Krapivin SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq (Yuan et al., 2020) 0.004 0.008 0.016 0.028 0.018 0.036 0.016 0.028 0.015 0.032
catSeqTG (Chen et al., 2019b) 0.005 0.011 0.011 0.018 0.018 0.034 0.011 0.018 0.015 0.032
catSeqTG-2RF1 (Chan et al., 2019) 0.012 0.021 0.019 0.031 0.030 0.053 0.021 0.030 0.027 0.050
GANMR (Swaminathan et al., 2020) 0.013 0.019 0.026 0.038 0.042 0.057 - - 0.032 0.045
ExHiRD-h (Chen et al., 2020) 0.011 0.022 - - 0.022 0.043 0.017 0.025 0.016 0.032
Transformer (ONE2SEQ) 0.0102 0.0194 0.0282 0.0482 0.0321 0.0604 0.0205 0.0233 0.0231 0.0461

SETTRANS (ONE2SET) 0.0211 0.0343 0.0422 0.0604 0.0477 0.07311 0.0263 0.0345 0.0362 0.0583

Table 3: Absent keyphrases prediction results of all models. The best results are bold. The subscript represents the
corresponding standard deviation (e.g., 0.0583 indicates 0.058±0.003).

and λabs respectively based on the validation set.
We conduct the experiments on a GeForce RTX
2080Ti GPU, repeat three times using different
random seeds, and report the averaged results.

4.4 Evaluation Metrics

We follow previous works (Chan et al., 2019;
Chen et al., 2020) and use macro-averaged F1@5
and F1@M for both present and absent keyphrase
predictions. F1@M compares all the keyphrases
predicted by the model with the ground-truth
keyphrases, which means it considers the number
of predictions. For F1@5, when the prediction
number is less than five, we randomly append
incorrect keyphrases until it obtains five predictions.
If we do not adopt such an appending operation,
F1@5 will become the same with F1@M when
the prediction number is less than five as shown in
Chan et al. (2019). We apply the Porter Stemmer
before determining whether two keyphrases are
identical and remove all the duplicated keyphrases
after stemming.

5 Results and Analysis

5.1 Present and Absent Keyphrase
Predictions

Table 2 and Table 3 show the performance evalua-
tions of the present and absent keyphrase, respec-
tively. We observe that the proposed SETTRANS

model consistently outperforms almost all the

previous state-of-the-art models on both F1@5
and F1@M metrics by a large margin, which
demonstrates the effectiveness of our methods. As
noted by previous works (Chan et al., 2019; Yuan
et al., 2020) that predicting absent keyphrases for
a document is an extremely challenging task, thus
the performance is much lower than that of present
keyphrase prediction. Regarding the comparison
of our Transformer model trained under ONE2SEQ

paradigm and SETTRANS model trained under
ONE2SET paradigm, we find SETTRANS model
consistently improves both keyphrase extractive
and generative ability by a large margin on almost
all the datasets, and maintains the performance
of present keyphrase prediction on the Inspec
and Krapivin datasets, which demonstrates the
advantages of ONE2SET training paradigm.

5.2 Diversity of Predicted Keyphrases

To investigate the model’s ability to generate
diverse keyphrases, we measure the average num-
bers of unique present and absent keyphrases,
and the average duplication ratio of all the pre-
dicted keyphrases. The results are reported in
Table 4. Based on the results, we observe that
our SETTRANS model generates more unique
keyphrases than other baselines by a large margin,
as well as achieves a significantly lower duplication
ratio. Note that ExHiRD-h specifically designed a
deduplication mechanism to remove duplication in
the inference stage. In contrast, our model achieves

Model Krapivin SemEval KP20k
#PK #AK Dup #PK #AK Dup #PK #AK Dup

Oracle 3.24 2.59 - 6.12 8.31 - 3.31 1.95 -
catSeq 3.50 0.67 0.46 3.48 0.77 0.53 3.71 0.55 0.39
catSeqTG 3.82 0.83 0.41 3.82 1.09 0.63 3.77 0.67 0.36
catSeqTG-2RF1 3.28 1.56 0.29 3.57 1.50 0.25 3.55 1.44 0.28
ExHiRD-h 4.41 1.02 0.14 3.65 0.99 0.09 3.97 0.81 0.11
Transformer 4.44 1.39 0.29 4.30 1.52 0.27 4.64 1.16 0.26
SETTRANS 4.83 2.20 0.08 4.62 2.18 0.08 5.10 2.01 0.08

Table 4: Number and duplication ratio of predicted
keyphrases on three datasets. “#PK” and “#AK” are
the average number of unique present and absent
keyphrases respectively. “Dup” refers to the average
duplication ratio of predicted keyphrases. “Oracle”
refers to the gold average keyphrase number.

a lower duplication ratio without any deduplica-
tion mechanism, which proves its effectiveness.
However, we also observe that our model tends
to overgenerate more present keyphrases than the
ground-truth on the Krapivin and KP20k datasets.
We analyze that different datasets have different
preferences for the number of keyphrases, which
we leave as our future work.

5.3 Ablation Study

To understand the effects of each component of the
SETTRANS model, we conduct an ablation study
on it and report the results on the KP20k dataset in
Table 5.

Effects of Model Architecture To verify the
effectiveness of the model architecture of SET-
TRANS, we remove the control codes and find the
model is completely broken. The duplication ratio
increases to 0.95, which means all the 20 control
codes predict the same keyphrase. This occurs
because when the control codes are removed, all
the predictions depend on the same condition
(i.e., the source document) without any distinction.
This demonstrates that the control codes play an
extremely important role in the SETTRANS model.

Effects of Target Assignment The major diffi-
culty for successfully training under ONE2SET

paradigm is the target assignment between pre-
dictions and targets. An attempt is first made to
remove the K-step target assignment mechanism,
which means that we employ a fixed sequential
matching strategy as in the ONE2SEQ paradigm.
From the results, we observe that both the present
and absent keyphrase performances degrade, the
number of predicted keyphrases also drops dramat-
ically, and the duplication ratio increased greatly
by 18%. We analyze the reasons as follows: (1)

Model Present Absent Dup
F1@5 F1@M #PK F1@5 F1@M #AK

Oracle - - 3.31 - - 1.95 -
SETTRANS 0.358 0.392 5.10 0.036 0.058 2.01 0.08
Model Architecture
- control codes 0.001 0.002 0.01 0.000 0.000 0.00 0.95
Target Assignment
- K-step assign 0.265 0.381 2.64 0.020 0.045 0.81 0.26
+ random assign 0.005 0.010 1.05 0.001 0.002 0.04 0.95

Set Loss
- teacher forcing 0.001 0.002 0.01 0.000 0.000 0.00 0.89
- separate set loss 0.355 0.383 5.31 0.016 0.031 0.55 0.05

Table 5: Ablation study of SETTRANS on KP20k
dataset. “- teacher forcing” refers to directly
calculating the loss after target assignment in a student
forcing schema. “- separate set loss” refers to using a
single set loss.

The dynamic characteristics of the K-step target
assignment remove unnecessary position constraint
during training, which encourages the model to
generate more keyphrases. Specifically, the model
can generate a keyphrase in any location rather
than only in the given position. Thus, the model
does not need to consider the position constraint
during the generation and encourages all the control
codes to predict keyphrases rather than only the
first few codes, which will be verified in Section
5.6. (2) The bipartite characteristics of the K-
step target assignment forces the model to predict
unique keyphrases, which reduces the duplication
ratio of predictions. When predictions from two
codes are similar, only one code may be assigned
a target keyphrase, and the other is assigned a
∅ token. Thus, the model can be very careful
about each prediction to prevent duplication. We
further experiment that replacing the K-step target
assignment with a random assignment, and we find
that the results are similar to those when removing
the control codes. This is because the random
assignment misleads the learning of the control
codes and causes them to become invalid.

Effects of Set Loss As discussed in Section
3.3.2, teacher forcing and a separate set loss
are used to train the model after assigning a
target for each prediction. We investigate their
effects in detail. The results show the following.
(1) Teaching forcing can alleviate the cold start
problem. After removing teaching forcing, the
model faces a cold start problem, in other words,
the lack of supervision information leads to a poor
prediction, and the target assignment is therefore
not ideal, which causes the model to fail at the
early stage of training. (2) A separate set loss helps
in both present and absent keyphrase predictions

Present
Absent

Pr
es

en
t F

1@
M

0.25

0.30

0.35

0.40

0.45

A
bsent F

1 @
M

0.01

0.02

0.03

0.04

0.05

0.06

Scale Factor λ
0 0.1 0.2 0.3 0.4 0.5

Present
Absent

N
um

be
r o

f P
re

di
ct

io
ns

0

2

4

6

8

10

Scale Factor λ
0 0.1 0.2 0.3 0.4 0.5

Figure 3: Performance and number of predictions for
present and absent keyphrase under different loss scale
factors λ for ∅ token on KP20k dataset. We set both
λpre and λabs to λ to simplify the comparison.

but also increases the duplication ratio slightly
compared with a single set loss. As producing
correct present keyphrases is an easier task, the
model tends to generate present keyphrases only
when using a single set loss. Our separate set
loss can infuse different inductive biases into the
two sets of control codes, which makes them more
focused on generating one type of keyphrase (i.e.,
the present one or absent one). Thus, it increases
the accuracy of the predictions and encourages
more absent keyphrase predictions. However,
because bipartite matching is performed separately,
the constraint of unique prediction does not exist
between the two sets, which leads to a slight
increase in the duplication ratio.

5.4 Performance over Scale Factors

In this section, we conduct experiments on KP20k
dataset to evaluate performance under different loss
scale factors λ for ∅ token. The results are shown
in Figure 3.

The left part of the figure shows that when λ =
0.2, the performances on both present and absent
keyphrases are consistently better than the results
when λ = 0.1. However, a scale factor larger than
0.1 improves the present keyphrase performance,
but also harms the absent keyphrase performance.
As we can see from the right part of the figure,
the number of predictions decreases consistently
for both the present and absent keyphrases when
the scale factor becomes larger. This is because
a larger scale factor causes the model to predict
more ∅ tokens to reduce the loss penalty during
training. Moreover, we also find that the precision
metric P@M will increases when the number of
predictions decreases. While the effect of the
decrease in the recall metric R@M is even greater
when the number is too small, which leads to a
degradation in the overall metric F1@M .

Training
Inference

Tr
ai

ni
ng

 S
pe

ed
up

0.50

0.55

0.60

0.65

0.70
Inference Speedup

6.2

6.3

6.4

6.5

6.6

6.7

Target Assignment Steps K
1 2 3 4 5 6

Present
Absent

Δ
F 1

@
M

0

0.005

0.010

0.015

0.020

Target Assignment Steps K
1 2 3 4 5 6

Figure 4: Performance and training/inference speedup
compared with Transformer over different target
assignment steps K on KP20k dataset.

5.5 Efficiency over Assignment Steps

In this section, we study the influence of target
assignment steps K on the prediction performance
and efficiency compared with Transformer.

As shown in the left part of Figure 4, we note
that when K is equal to 1, the improvement of
SETTRANS over Transformer is relatively lower
than when it is equal to 2 (i.e., the average
length of keyphrase). This is mainly because
some keyphrases that have the same first word
cannot be distinguished during training, which
could interfere with the learning of control codes.
The right part of Figure 4 shows the training and
inference speedup with various K compared with
the Transformer. We note SETTRANS could be
slower than Transformer at the training stage, and
a smaller K could alleviate this problem. For
performance and efficiency considerations, we
consider 2 to be an appropriate value for steps
K. Moreover, as K is only used in the training
stage, SETTRANS is 6.44 times invariably faster
than Transformer on the inference stage. This is
because that with different control codes as input
condition, all the keyphrases can be generated in
parallel on the GPU. Hence, in addition to better
performance than Transformer, SETTRANS also
has great advantages in the inference efficiency.

5.6 Analysis of Learned Control Codes

Our analysis here is driven by two questions from
Section 5.3:

(1) Whether the K-step target assignment mech-
anism encourages all the control codes to predict
keyphrases rather than only the first few codes?

(2) Whether the separate set loss makes the
control codes more focused on generating one type
of keyphrase (i.e., present or absent) compared to
the single set loss?

To investigate these two questions, we measure
the ratio of present and absent keyphrase predic-

Pre.KP Ratio
Abs.KP Ratio

0

50

100

0

50

100

0

50

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 5: Ratio of present and absent keyphrase
predictions for all the control codes on KP20k dataset.
The subgraphs from top to bottom are for the
“w/o K-step target assignment”, “a single set loss”,
and “a separate set loss” cases, respectively. The
summation of the ratios of the present keyphrases,
absent keyphrases and ∅ equals to 100% for each code.

tions for all the control codes on the KP20k dataset,
which is shown in Figure 5. As shown in the top
and middle subfigures, we observe that without
the target assignment mechanism, many control
codes are invalid (i.e., only predicting ∅), and
only the first small part performs valid predictions.
Moreover, when there are already very few valid
predictions, the model still has a duplication ratio
of up to 26%, as shown in Table 5, resulting in an
even smaller number of final predictions. After the
introduction of the target assignment mechanism,
most of the codes can generate valid keyphrases,
which increases the number of predictions.

However, as shown in the middle subfigure,
most of the control code tends to generate more
present keyphrases than absent keyphrases when
using a single set loss. When using a separate
set loss in the bottom subfigure, the two parts are
more inclined to predict only present and absent
keyphrases respectively, which also increases the
number of absent keyphrase predictions.

6 Conclusions

In this paper, we propose a new training paradigm
ONE2SET without predefining an order to concate-
nate the keyphrases, and a novel model SETTRANS

that predicts a set of keyphrases in parallel. To
successfully train under ONE2SET paradigm, we
propose a K-step target assignment mechanism
and a separate set loss, which greatly increases the
number and diversity of the generated keyphrases.
Experiments show that our method gains signif-
icantly huge performance improvements against

existing state-of-the-art models. We also show that
SETTRANS has great advantages in the inference
efficiency compared with the Transformer under
ONE2SEQ paradigm.

Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by China National Key R&D Program
(No. 2017YFB1002104), National Natural Science
Foundation of China (No. 62076069, 61976056),
Shanghai Municipal Science and Technology Ma-
jor Project (No.2021SHZDZX0103).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin
King. 2019. Neural keyphrase generation via
reinforcement learning with adaptive rewards. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2163–2174, Florence, Italy. Association for Compu-
tational Linguistics.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan,
and Zhoujun Li. 2018. Keyphrase generation
with correlation constraints. In Proceedings of
the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4057–4066,
Brussels, Belgium. Association for Computational
Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019a. An integrated approach
for keyphrase generation via exploring the power of
retrieval and extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2846–2856, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin
King. 2020. Exclusive hierarchical decoding
for deep keyphrase generation. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 1095–1105,
Online. Association for Computational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and
Michael R. Lyu. 2019b. Title-guided encoding for
keyphrase generation. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI, pages
6268–6275. AAAI Press.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.1609/aaai.v33i01.33016268

Sujatha Das Gollapalli, Xiaoli Li, and Peng Yang. 2017.
Incorporating expert knowledge into keyphrase
extraction. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 3180–
3187. AAAI Press.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing, pages
216–223.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5
: Automatic keyphrase extraction from scientific
articles. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 21–26,
Uppsala, Sweden. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases
extraction. Technical report, University of Trento.

Harold W Kuhn. 1955. The hungarian method for
the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011. Automatic keyphrase extrac-
tion by bridging vocabulary gap. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning, pages 135–144, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing, pages 1318–1327, Singapore.
Association for Computational Linguistics.

Rui Meng, Xingdi Yuan, Tong Wang, Peter
Brusilovsky, Adam Trischler, and Daqing He.
2019. Does Order Matter? An Empirical Study on
Generating Multiple Keyphrases as a Sequence. In
arXiv:1909.03590 [Cs].

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
keyphrase generation. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 582–592, Vancouver, Canada. Association for
Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 404–411, Barcelona,
Spain. Association for Computational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International conference on Asian digital libraries,
pages 317–326. Springer.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with
pointer-generator networks. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1073–1083, Vancouver, Canada. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104–3112.

Avinash Swaminathan, Haimin Zhang, Debanjan
Mahata, Rakesh Gosangi, Rajiv Ratn Shah, and
Amanda Stent. 2020. A preliminary exploration of
GANs for keyphrase generation. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8021–8030, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Xiaojun Wan and Jianguo Xiao. 2008. Single
document keyphrase extraction using neighborhood
knowledge. In AAAI, volume 8, pages 855–860.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Peter Brusilovsky, Daqing He, and Adam
Trischler. 2020. One size does not fit all: Generating
and evaluating variable number of keyphrases. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7961–7975, Online. Association for Computational
Linguistics.

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14628
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14628
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://www.aclweb.org/anthology/W03-1028
https://www.aclweb.org/anthology/W03-1028
https://www.aclweb.org/anthology/S10-1004
https://www.aclweb.org/anthology/S10-1004
https://www.aclweb.org/anthology/S10-1004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://eprints.biblio.unitn.it/1671/1/disi09055-krapivin-autayeu-marchese.pdf
http://eprints.biblio.unitn.it/1671/1/disi09055-krapivin-autayeu-marchese.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.2754&rep=rep1&type=pdf#page=46
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.2754&rep=rep1&type=pdf#page=46
https://www.aclweb.org/anthology/W11-0316
https://www.aclweb.org/anthology/W11-0316
https://www.aclweb.org/anthology/D09-1137
https://www.aclweb.org/anthology/D09-1137
http://arxiv.org/abs/1909.03590
http://arxiv.org/abs/1909.03590
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/W04-3252
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.9192&rep=rep1&type=pdf
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aaai.org/Papers/AAAI/2008/AAAI08-136.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-136.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-136.pdf
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase extraction using deep
recurrent neural networks on Twitter. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 836–845,
Austin, Texas. Association for Computational Lin-
guistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporating
linguistic constraints into keyphrase generation. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5224–5233, Florence, Italy. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515

