
Math Word Problem Solving with Explicit Numerical Values

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, Xuanjing Huang∗
Shanghai Key Laboratory of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai, China

(qzwu17,qz,zywei,xjhuang)@fudan.edu.cn

Abstract

In recent years, math word problem solving
has received considerable attention and
achieved promising results, but previous
methods rarely take numerical values into
consideration. Most methods treat the
numerical values in the problems as number
symbols, and ignore the prominent role
of the numerical values in solving the
problem. In this paper, we propose a novel
approach called NumS2T, which enhances
math word problem solving performance by
explicitly incorporating numerical values into
a sequence-to-tree network. In addition, a
numerical properties prediction mechanism is
used to capture the category and comparison
information of numerals and measure
their importance in global expressions.
Experimental results on the Math23K and
APE datasets demonstrate that our model
achieves better performance than existing
state-of-the-art models.

1 Introduction

Taking a math word problem as input, the math
word problem solving task aims to generate a cor-
responding solvable expression and answer. With
the advancements in natural language processing,
math word problem solving has received growing
attention in recent years (Roy and Roth, 2015;
Mitra and Baral, 2016; Ling et al., 2017; Huang
et al., 2018). Many methods have been proposed
that use sequence-to-sequence (seq2seq) models
with an attention mechanism (Bahdanau et al.,
2014) for math word problem solving (Wang et al.,
2017b, 2018b, 2019). To better utilize expression
structure information, some methods use sequence-
to-tree (seq2tree) models to generate expressions
and have achieved promising results (Liu et al.,

∗ Corresponding author.

Problem: A school purchased several pairs of new

desks and chairs for grade students. Each desk

is worth $, and each chair is worth $.

The price difference between the tables and the

chairs is $. There are more students

than chairs. How many students are there?

Expression 1: 𝑣4 / (𝑣2 - 𝑣3) + 𝑣5
Numerical expression: 100 / (15 – 10) + 25

Expression 2: 𝑣4 / (𝑣2 - 𝑣3) * (1 + 𝑣5)

Numerical expression: 64 / (9.9 – 8.3) * (1+20%)

Expression 3: 𝑣4 / (𝑣3 - 𝑣2) * (1 + 𝑣5)

Numerical expression: 18 / (8 – 6.5) * (1 + (1/3))

𝑣1
1

3

7

15

9.9

6.5

𝑣2

10

8.3

8

𝑣3

𝑣4
100

64

18

𝑣5
25

20%

(1/3)

Figure 1: Example of a math word problem. The
same problem with different numerical values may
correspond to different math expressions. Without
numerical value information, the model can hardly
determine which expression is correct.

2019; Xie and Sun, 2019; Wu et al., 2020). These
methods convert the target expression into a binary
tree, and generate a pre-order traversal sequence of
this expression tree based on the parent and sibling
nodes of each node.

Although promising results have been achieved,
previous methods rarely take numerical values into
consideration, despite the fact that in math word
problem solving, numerical values provide vital
information. As an infinite number of numerals can
appear in math word problems, it is impossible to
list them all in the vocabulary. Previous methods re-
place all the numbers in the problems with number
symbols (e.g., v1, v2) in order in the preprocessing
stage. These replaced problems are used as input
to directly generate expressions containing number

symbols. The number symbols in the expressions
are then replaced with the numerical values in the
original problems to obtain executable expressions.
As shown in Figure 1, taking the problem with
numerical values {v2=15, v3=10, v4=100, v5=25}
as input, the target expression of the problem would
be “v4/(v2 − v3) + v5”. However, if the number
symbol v5 = 20%, the target expression for the
same problem would be “v4/(v2 − v3) ∗ (1 + v5)”.
Similarly, without numerical value information, the
model can hardly determine whether the number
gap between the table and the chair should be
v2 − v3 or v3 − v2. As such, it will incorrectly
generates the same expression for problems with
different numerical values.

To address these problems, we propose a novel
approach called NumS2T to better capture nu-
merical value information and utilize numerical
properties. Specifically, the proposed model uses a
sequence-to-tree network with a digit-to-digit num-
ber encoder that explicitly incorporates numerical
values into the model and captures number-aware
problem representations. In addition, we designed
a numerical properties prediction mechanism to fur-
ther utilize the numerical properties. NumS2T pre-
dicts the comparative relationship between paired
numerical values, determines the category of each
numeral, and measures their importance for gen-
erating the final expression. With the category
and comparison information, the model can better
identify the interactive relationship between the
numerals, and thus generate better results. With
consideration of the importance of the numerals,
the model can capture the global relationship
between the numerals and target expressions rather
than simply focusing on the local relationship
between numeral pairs.

The main contributions of this paper can be
summarized as follows:

• We explicitly incorporate numerical value
information into math word problem solving
tasks.

• We propose a numerical properties prediction
mechanism to utilize numerical properties. To
incorporate the local relationship between nu-
merals and the global relationship associated
with the final expression, NumS2T compares
the paired numerical values, determines the
category of each numeral, and then measures
whether they should appear in the final expres-
sion.

• We conducted experiments on two large-
scale Math23K and Ape210K datasets to
verify the effectiveness of our NumS2T model.
The results show that our model achieved
better performance than existing state-of-the-
art methods.

2 Models

In this section, we present details regarding our
proposed NumS2T model. As shown in Figure 2,
we use an attention-based sequence-to-tree model
with a problem encoder (Section 2.2) and a tree-
structured decoder to generate math expressions
(Section 2.4). In addition, we explicitly incorporate
numerical values to obtain number-aware problem
representations (Section 2.3). Finally, we propose
a numerical properties prediction mechanism to
further utilize the numerical properties (Section
2.5).

2.1 Problem Definition

A math word problem X = (x1, x2, . . . , xm) is a
sequence of m words. Our goal is to generate a
math expression Y = (y1, y2, . . . , yn), where Y is
the pre-order traversal sequence of a binary math
expression tree, which can be executed to produce
the answer to problem X.

Here, we replace all of the numbers in the prob-
lem X with a list of number symbols based on their
order of appearance. Let Vc = (v1, v2, . . . , vK)
be the K numbers that appear in problem X.
The numerical value of the k-th number vk is
a sequence of l characters (v1k, v

2
k, . . . , v

l
k). The

generated vocabulary Vg is composed of several
common numbers (e.g., 1,100,π) and several math
operators (e.g., +,-,*,/). At each time step during
decoding, the NumS2T model either copies a
number from Vc or generates a number from Vg.

2.2 Problem Encoder

We use a two-layer bidirectional LSTM (BiL-
STM) (Hochreiter and Schmidhuber, 1997) net-
work as the encoder, which encodes the math
word problem X into a sequence of hidden states
H=(hx

1,h
x
2, . . . ,h

x
m) ∈ Rm×2d as follows:

hx
i = [

−→
hx
i ,
←−
hx
i],

−→
hx
i = BiLSTM(E(xi),

−−→
hx
i−1),

←−
hx
i = BiLSTM(E(xi),

←−−
hx
i−1).

(1)

𝐡𝐯𝟏 𝐡𝐯𝟐 𝐡𝐯𝒌 𝐡𝐯𝒌+𝟏 𝐡𝐯𝑲

−

𝑔7 ≥ 𝑔6.5

𝑔7 < 𝑔8

𝑔7 < 𝑔18

𝑔7 ≥ 𝑔(1/3)

𝑔6.5 < 𝑔7

−

𝑔6.5 < 𝑔8

𝑔6.5 < 𝑔18

𝑔6.5 ≥ 𝑔(1/3)

𝑔8 ≥ 𝑔7

𝑔8 ≥ 𝑔6.5

−

𝑔8 < 𝑔18

𝑔8 ≥ 𝑔(1/3)

𝑔18 ≥ 𝑔7

𝑔18 ≥ 𝑔6.5

𝑔18 ≥ 𝑔8

−

𝑔18 ≥ 𝑔(1/3)

𝑔(1/3) < 𝑔7

𝑔(1/3) ≥ 𝑔6.5

𝑔(1/3) < 𝑔8

𝑔(1/3) < 𝑔18

−

Pairwise Comparison Score

Pairwise Comparison Loss

𝐡𝐯𝟏 𝐡𝐯𝟐 𝐡𝐯𝒌 𝐡𝐯𝒌+𝟏 𝐡𝐯𝑲

Integer Decimal Fraction Percentage

Numeral Categories Loss

Category

𝐡𝐯𝟏 𝐡𝐯𝟐 𝐡𝐯𝒌 𝐡𝐯𝒌+𝟏 𝐡𝐯𝑲

Target expression

Scalar

Value 𝑔𝑣𝑘
′

𝑔𝑣1
′ 𝑔𝑣2

′ 𝑔𝑣𝑘
′ 𝑔𝑣𝑘+1

′ 𝑔𝑣𝐾
′

Global Relationship Loss

𝑥1 𝑥2 𝑥𝑖 𝑥𝑖+1 𝑥𝑚

Embedding Layer

Bi-LSTM

Graph Attention Network

𝐡𝟏
𝐱 𝐡𝟐

𝐱 𝐡𝐢
𝐱 𝐡𝐢+𝟏

𝐱 𝐡𝐦
𝐱

𝐡𝟏
𝐤𝐠

𝐡𝟐
𝐤𝐠

𝐡𝐢
𝐤𝐠

𝐡𝐢+𝟏
𝐤𝐠

𝐡𝐦
𝐤𝐠

𝐡𝟏
𝐧 𝐡𝟐

𝐧 𝐡𝐢
𝐧 𝐡𝐢+𝟏

𝐧 𝐡𝐦
𝐧

𝐡𝟏
𝐜𝐧 𝐡𝟐

𝐜𝐧 𝐡𝐢
𝐜𝐧 𝐡𝐢+𝟏

𝐜𝐧 𝐡𝐦
𝐜𝐧

𝐡𝟏 𝐡𝟐 𝐡𝐢 𝐡𝐢+𝟏 𝐡𝐦

Attention & Aggregation

& Copy Mechanism

𝑦2𝑦1 𝑦3 𝑦4

Generated expression

Math Word Problem

* / 𝑣4 -

𝑦1

𝑦2𝑦2

𝑦4𝑦3

𝑦1

𝑦2𝑦2

𝑦3

𝑦1

𝑦2𝑦2𝑦1

Generated partial expression tree

* * / * / 𝑣4 * / 𝑣4 -

(b) Numerical Values Encoder

𝑣𝑘
1 𝑣𝑘

2 𝑣𝑘
𝑗

𝑣𝑘
𝑗+1 𝑣𝑘

𝑙

𝐡𝐯𝐤,𝟏
𝐧 𝐡𝐯𝐤,𝟐

𝐧 𝐡𝐯𝐤,𝐣
𝐧 𝐡𝐯𝐤,𝐣+𝟏

𝐧 𝐡𝐯𝐤,𝐥
𝐧

Average Pooling Layer

(1 / 3)

digit-to-digit encode

𝐡𝐯𝟏
𝐧 𝐡𝐯𝟐

𝐧 𝐡𝐯𝐤
𝐧 𝐡𝐯𝐤+𝟏

𝐧 𝐡𝐯𝐊
𝐧

𝑣1 𝑣2 𝑣𝑘 𝑣𝑘+1 𝑣𝐾

encode encode encode encode encode

7 6.5 8 18 (1/3)

𝐡𝐯𝟏
𝐜𝐧 𝐡𝐯𝟐

𝐜𝐧 𝐡𝐯𝐤
𝐜𝐧 𝐡𝐯𝐤+𝟏

𝐜𝐧 𝐡𝐯𝐊
𝐜𝐧

Self

attention

Numerical Values

Concatenate

Replacing

Number-aware problem states

7 6.5 8 18 (1/3) 7 6.5 8 18 (1/3)

7 6.5 8 18 (1/3)

(a) Sequence-to-tree Model (c) Numerical Properties Prediction Mechanism

Representations of all numerals 𝐡𝐯𝐤

𝐡𝐢
𝐱 Problem hidden states 𝐡𝐢

𝐤𝐠 Knowledge-aware problem hidden states

𝐡𝐢
𝐧 Numeral hidden states 𝐡𝐢

𝐜𝐧 Contextual numeral hidden states Number-aware problem representations𝐡𝐢

Figure 2: Main structure of our NumS2T model. Given a math word problem sequence, we use (a) an
attention-based sequence-to-tree model to generate its math expression. To explicitly incorporate numerical value
information, we use (b) a numerical values encoder to obtain the number-aware problem states hnum

i , which are
then concatenated with the problem hidden states in (a) to obtain number-aware problem representations hi. In
addition, we propose (c) a numerical properties prediction mechanism for comparing the paired numerical values,
determining the category of each numeral, and measuring whether they should appear in the target expression.

Here, word embedding vectors E(xi) are obtained
via a wording embedding layer E(·). d is the
dimension of the hidden state and hx

i is the
concatenation of the forward and backward LSTM
hidden states.

Following Wu et al. (2020), we enrich the prob-
lem representations with common-sense knowl-
edge information from external knowledge bases.
The words in problem sequences X and their cate-
gories in external knowledge bases are constructed
as an entity graph. The knowledge-aware problem
states hkg

i are obtained from a two-layer graph
attention network (Veličković et al., 2018) on the
entity graph:

αij = softmax
Aij=1

(f (wT
h [Wxh

x
i : Wxh

x
j])),

hkg
i = ||

t=1,...,T

σ(
∑

Aij=1
αijWkh

x
j),

(2)

where wT
h ,Wx,Wk are weight vector and ma-

trices. || and [:] are concatenation functions. f(·)
and σ are the LeakyRelu and sigmoid activation
functions. T is the number of heads in GAT layer.
In this entity graph, each word is related to its
neighbor in the problem. If there are two nouns
belonging to the same category in the knowledge
base, these two nouns are related to their categories.
See Wu et al. (2020) for more details. If the i-th
word is related to the j-th word, the score of the
adjacent matrix Aij is set to 1, otherwise it is set to
0.

2.3 Number-aware Problem Representations

To solve the issues mentioned in the introduction
section, we need to incorporate explicit numerical
value information into NumS2T. However, there
are an infinite number of numerals that can appear
in math word problems. For example, among the
18,529 problems in the training set of Math23K,
there are 3,058 different numerical values. There-

fore, rather than list all these numerals in the
vocabulary, we encode each numeral value digit
by digit.

All the digits in the numerical value vk are
treated as a sequence (v1k, v

2
k, . . . , v

l
k) and embed-

ded via the embed layer E(·). Take a 5-digit value
vk = (1/3) as an example, we have E(vk) ∈
R5×demb . Similar to the architecture shown in
Equation 1, we use a BiLSTM network to encode
the numeral values and obtain the numeral hidden
states hvk

with an average pooling layer:

hn
vk,j

= BiLSTM(E(vjk),h
n
vk,j−1

),

hn
vk

=
1

l

∑l

j=1
hn
vk,j

.
(3)

To capture the relations and dependency between
numeral pairs, we use a self-attention mechanism
(Wang et al., 2017a) on the hidden state of all
the numerals Hn

v = {hn
vk
}Kk=1 to compute the

contextual numeral hidden states hcn
vk

:

αvk = softmax((Hn
v)

TWhh
n
vk
),

hcn
vk

= αvk ·H
n
v,

(4)

where αvk is the attention distribution of vk on all
the numerals in the problem X.

Combining the numeral hidden states hn
vk

, hcn
vk

with the original problem hidden states hx
i , hkg

i ,
we have number-aware problem states hnum

i en-
hanced with explicit numeral value information:

hnum
i =

{
[hn

vk
: hcn

vk
] xi = vk

[hx
i : hkg

i] xi is not a number
(5)

The final number-aware problem representations
are obtained by concatenating the problem hidden
states hx

i , the knowledge-aware problem states hkg
i

and the number-aware problem states hnum
i :

hi = [hx
i : hkg

i : hnum
i]. (6)

2.4 Tree Structured Decoder
Previous works (Xie and Sun, 2019; Liu et al.,
2019; Wu et al., 2020) have confirmed that a
sequence-to-tree model can better represent the
expression structures than a sequence-to-sequence
model, because a tree structured decoder can
capture the global expression information and
focus on the features of adjacent nodes.

The tree structured decoder takes the final
number-aware problem representations hi as input

and generates the target expression from top to
bottom. The target expression can be regarded as a
pre-order traversal of a binary tree, with operators
as internal nodes and numbers as leaf nodes. The
decoder is a one-layer LSTM, which updates its
states as follows:

st+1 = LSTM([E(yt) : ct : rt], st). (7)

At time step t+1, the decoder uses the last generated
word embedding E(yt), the problem context state
ct and the expression context state rt to update its
previous hidden state st.

The problem context state ct is computed via
attention mechanism as follows:

αti = softmax(tanh(Whhi+Ws[st : rt])),

ct =
m∑
i=1

αtihi,
(8)

where Wh, Ws are weight matrices. αti is the
attention distribution on the number-aware problem
representations hi.

The expression context state rt is computed
via a state aggregation mechanism (Wu et al.,
2020). It describes the global representation of
the partial expressions y<t = (y1, y2, . . . , yt−1)
being generated by the decoder. At time step t,
the decoder aggregates each node’s context state
with its neighbor nodes in the generated partial
expression tree. The aggregation functions are as
follows:

r0t = st,

rη+1
t = σ(Wr[r

η
t : rηt,p : rηt,l : r

η
t,r]),

(9)

where σ is the sigmoid function and Wr is a weight
matrix. r0t is initialized with decoder hidden state
st when η = 0,. rt,p, rt,l, rt,r are the context state
of the parent node, the left child node, and the
right child node of yt in the expression tree. rη+1

t

represents the expression context state updated with
global information from all nodes in the generated
partial expression.

Lastly, the decoder can generate a word from
a given vocabulary Vg. It can also generate a
number symbol in Vc, and use it to copy a number
from the problem X. The final distribution is the
combination of the generated probability and copy

probability:

Hv = {hvk
}Kk=1,

pc = σ(Wz[st : ct : rt] +WvHv),

Pc(yt) = softmax(f ([st : ct : rt : Hv])),

Pg(yt) = softmax(f ([st : ct : rt])),

P(yt|y<t,X) = pcPc(yt) + (1−pc)Pg(yt).

(10)

Here, Hv are the number-aware problem represen-
tations of all the numerals vk in X. Wz,Wv are the
weight matrices. f(·) is a perception layer. pc is
the probability that the current word is a number
copied from the problem.

2.5 Numerical Properties Prediction
Mechanism

Our NumS2T model explicitly incorporates numer-
ical values information. Furthermore, utilize the
numerical properties to the degree possible through
a numerical properties prediction mechanism. We
consider three numerical properties to be useful for
solving math word problems:

Pairwise Numeral Comparison. If we con-
sider the question “What is the difference between
v1 and v2,” the comparative relationship between
these two numerals can help the model decide
whether to generate v1 − v2 or v2 − v1. In
this paper, we compare each numeral vk in the
question with the other numerals. Then, we
calculate the pairwise comparison scores zkj based
on their number-aware problem representations,
and we optimize the pairwise comparison loss
to assign numerals with larger numerical values
higher pairwise comparison scores. The pairwise
comparison loss LCR is calculated as follows:

gvk = σ(Whhvk
),

zkj =

{
max(0, gvj − gvk) if vk ≥ vj
max(0, gvk − gvj) if vk < vj

,

LCR = − 1

K2

K∑
k=1

K∑
j=1

zkj ,

(11)

Numeral categories. In the sentence “the
number of apples is 5 more than the number of
pears,” replacing the numeral 5 with the integer 100
may not affect the structure of the target expression,
but replacing the numeral 5 with 20% may change
the structure from “+5” to “*(1 + 20%)”. We
roughly divide all numbers into four categories:

{integer, decimal, fraction, percentage}, and assign
a category label C = {1,2,3,4}, respectively. Given
the number-aware problem representations hvk

for
each numeral vk, we calculate the category score
distribution P(Cvk |hvk

) and then minimize the
negative log likelihood:

P(Cvk |hvk
)=softmax(Wchvk

),

LCA = − 1

K

K∑
k=1

log P(Cvk |hvk
).

(12)

Global relationship with target expressions.
Current models tend to focus on the local rela-
tionship between numerals, while sometimes these
numerals are not related to the target expression.
Given “3 bags of rice weighing 60 kg,” the numeral
3 is highly correlated with 60. However, if the
problem relates to the total price of the rice rather
than the weight of each bag of rice, the numeral
3 is not so important for generating the target
expression. The NumS2T model predicts a scalar
value g′vk for each numeral that denotes whether
this numeral will be used in a math expression.
The importance label avk=1 when vk is used in
the ground truth math expression, otherwise avk=0.
The supervised loss is defined by:

g′vk = σ(Wghvk
),

LGR=−
1

K

K∑
k=1

ai log g
′
vk
+(1−ai) log (1−g′vk).

(13)

2.6 Training
During training, for each question–expression pair
(X, Y), we first train the NumS2T by optimizing
the maximum likelihood estimation (MLE) loss
Ll on the probability distribution P(yt|y<t,X)).
Then, the final loss function L is a combination of
the MLE loss and three numerical properties loss
functions:

Ll = −
1

n

n∑
i=1

logP(yt|y<t,X)),

L = Ll + β1LCR + β2LCA + β3LGR.
(14)

Here, β1, β2, β3 are hyper-parameters.

3 Experiment

3.1 Dataset
We present the experimental results of math word
problem solving using our proposed models on

the Math23K (Wang et al., 2017b) and Ape210K
(Zhao et al., 2020)1 datasets. Following Xie and
Sun (2019), we removed the problems that the
corresponding expressions could not be executed
to obtain the given answers and the problems that
omit intermediate calculation expressions. For
Math23K, following previous studies (Xie and
Sun, 2019; Wu et al., 2020), we randomly split
the dataset into a training set, a development set
and a test set with 18,529, 2,316, 2,316 problems.
For Ape210K, we use the official data partition.
There are 166,270, 4,157, and 4,159 problems
in our training set, development set and test set,
respectively.

We report answer accuracy as the main evalu-
ation metrics of the math word problem solving
task.

3.2 Implementation Details

In this paper, we truncate the problem to a max
sequence length of 150, and the expression to
a max sequence length of 50. We select 4,000
words that appear most frequently in the training
set of each dataset as the vocabulary, and replace
the remaining words with a special token UNK.
We initialize the word embedding with the pre-
trained 300-dimension word vectors2. The problem
encoder used two external knowledge bases: Cilin
(Mei, 1985) and Hownet (Dong et al., 2010). The
number of heads T in GAT is 8. The hidden
size is 512 and the batch size is 64. We use
the Adam optimizer (Kingma and Ba, 2014) to
optimize the models an the learning rate is 0.001.
We compute the final loss function with β1, β2, β3
of 0.5. Dropout (Srivastava et al., 2014) is set to 0.5.
Models are trained in 80 epoches for the Math23K
dataset and 50 epoches for the Ape210K dataset.
During testing, the beam size is set to 5. Once all
internal nodes in the expression tree have two child
nodes, the decoder stops generating the next word.
The hyper-parameters are tuned on the valid set.

3.3 Baselines

We compare our proposed NumS2T model with
the following baseline models: DNS (Wang et al.,
2017b) is a seq2seq model with a two-layer GRU
as an encoder and a two-layer LSTM as a decoder.
DNS-Retrieval is a variant of DNS that combines
a retrieval model. S2S (Wang et al., 2018a)

1https://github.com/yuantiku/ape210k
2https://github.com/Embedding/Chinese-Word-Vectors

Models Math23K APE210K
DNS 58.1% -
DNS-Retrieval 64.7% -
S2S 66.7% 56.6%
RecursiveNN 68.7% -
Tree-Decoder 69.0% 66.5%
GTS 74.3% 67.7%
KA-S2T 76.3% 68.7%
NumS2T 78.1% 70.5%

Table 1: Answer accuracy of our model and other
state-of-the-art models on the Math23K and APE210K
datasets.

is a standard bidirectional LSTM-based seq2seq
model with an attention mechanism. RecursiveNN
(Wang et al., 2019) uses a recursive neural network
on the predicted tree structure templates Tree-
Decoder (Liu et al., 2019) is a seq2tree model with
a tree structured decoder. The decoder generates
each node based on its parent node and its sibling
node. GTS (Xie and Sun, 2019) generates each
node based on its parent node and its left sibling
subtree embedding. The subtree embedding is
obtained by merging the embedding of the subtree
from bottom to top. KA-S2T (Wu et al., 2020) is
a seq2tree model with external knowledge and a
state aggregation mechanism. The decoder use a
two-layer GCN to recursively aggregate neighbors
of each node in the partial expression tree.

3.4 Results Analysis
The main evaluation results are presented in Table
1. Compared with baseline methods, our model
obtains the highest answer accuracy of 78.1% in
the Math23K dataset and 70.5% in the APE210K
dataset, which is significantly better than other
state-of-the-art methods. The experimental results
provide the following observations:

1) The methods with a tree-structured decoder
(Tree-Decoder, GTS, KA-S2T) perform better than
methods with a sequence-structured decoder (DNS,
S2S). These methods treat the math expression as
a binary tree and directly use adjacent nodes in the
tree instead of the previous word in the sequence
to generate the next word. In this way, the model
can better capture the structure information of the
math expressions.

2) The KAS2T model with external knowledge
performs better than GTS, which proves that
external knowledge enables the model to obtain
better interaction between words.

Models Math23K APE210K
KA-S2T 76.3% 68.7%
NumS2T w/o Symbols 75.4% 64.4%
NumS2T w/o Numerals 76.6% 69.2%
NumS2T w/o SelfAtt 77.3% 69.8%
NumS2T 78.1% 70.5%

Table 2: Ablation study on reducing the numerical
values incorporated into the model.

3) NumS2T outperforms all the other baselines.
This result shows the effectiveness of the explicitly
incorporated numerical values and use of a numeri-
cal properties prediction mechanism.

3.5 Ablation Study

Effect of explicitly incorporating numerical val-
ues: We designed several NumS2T variants that
reduce the numerical values incorporated in the
model. Here, “NumS2T w/o Numerals” means
that we remove the character-level numeric value
encoder. An input example is “Alan bought
v1 apples for $ v2”. “NumS2T w/o Symbols”
means that we not only remove the character-level
numeric value encoder, but also replace the math
symbols in math problems with character-level
numeric values. An input example is “Alan bought
2 5 apples for $ 1 5 0”.

Table 2 shows the results of these different
variants, from which we can see:

1)The experimental results show that model
performance of “NumS2T w/o Symbols” is sig-
nificantly reduced in both datasets. We believe this
is because directly replacing the number symbols
will make it difficult for the model to obtain the
overall representation of each number.

2) The use of a self-attention mechanism signifi-
cantly improves the accuracy by 0.8% in Math23K
and 0.7% in APE210K. This is because the same
numerical value may describe different information
in different problems. Therefore, the self-attention
mechanism combines numerical values with other
numerical values in the problem, which helps to
model numerical information and the relations
between these numerals.

3) Without numerical values, the answer ac-
curacy of “NumS2T w/o Numerals” would be
reduced to 76.6% and 69.2%. The results show
the benefit of explicitly incorporating numerical
values.
Effect of the numerical properties prediction
mechanism: Table 3 shows the results of several

Models Math23K APE210K
KA-S2T 76.3% 68.7%
NumS2T-base 77.0% 69.6%
NumS2T-base + CR 77.7% 70.1%
NumS2T-base + CA 77.4% 70.0%
NumS2T-base + GR 77.3% 69.8%
NumS2T 78.1% 70.5%

Table 3: Ablation study on reducing the numerical
properties used in the numerical properties prediction
mechanism. CR, CA and GR respectively indicate
pairwise numeral comparison, numeral category and
global relationship with the target expression.

NumS2T variants designed to measure the effect
of the numerical properties prediction mechanism.
From the table we can observe that:

1) NumS2T-base is the variant of NumS2T
without the numerical properties prediction mech-
anism. Without numerical properties, the answer
accuracy in the Math23K and APE210K datasets
are reduced to 77.0% and 69.6%, which show
that the numerical properties prediction mechanism
contributes considerably to improving performance.
In addition, NumS2T-base still outperforms the
state-of-the-art baseline KA-S2T, which once again
proves the effectiveness of explicitly incorporating
numerical values.

2) The use of pairwise numeral comparison,
numeral category and global relationship with a
target expression can improve accuracy by ap-
proximately 0.6%, 0.4% and 0.3%, respectively.
Their combination achieves further improvements
in model performance. These results show the
effectiveness of the numerical properties prediction
mechanism because it enables the model to further
utilize numerical properties.
Model performance on problems with a differ-
ent number of numerals: Table 4 shows the
results for how accuracy changes as the number of
numerals in the problem increases. The NumS2T
model outperforms the best-performing baseline
with respect to problems with a different number of
numerals. In addition, as the number of numerals
in the problems increase, the performance gap
between NumS2T and KAS2T also increases. This
is because with more numerals in the problem,
NumS2T, which explicitly incorporate numerical
value information, is able to more readily achieve
better performance. Meanwhile, NumS2T also
achieved a considerable improvement on problems
with only one numeral. This further demonstrates

Math23K
Num. Prop. KA-S2T NumS2T Imp.(↑)
≤1 2.0% 80.9% 83.0% 2.1%
2 36.8% 84.6% 85.1% 0.5%
3 46.1% 77.4% 78.4% 1.0%
4 11.4% 58.3% 60.6% 2.3%
5 2.8% 45.2% 54.9% 9.7%
6 0.7% 33.3% 46.7% 13.4%
≥ 7 0.3% 12.5% 37.5% 25.0%

APE210K
Num. Prop. KA-S2T NumS2T Imp.(↑)
≤1 9.1% 67.9% 71.4% 3.5%
2 34.4% 74.6% 75.5% 0.9%
3 36.9% 72.2% 75.6% 3.4%
4 12.7% 53.2% 57.4% 4.2%
5 3.6% 30.1% 43.7% 4.6%
6 1.4% 40.7% 54.2% 13.5%
≥ 7 1.9% 19.0% 27.9% 8.9%

Table 4: Model performance on problems with a
different number of numerals. Prop. denotes the
proportion of these problems in the dataset. Imp.
denotes the accuracy improvement between NumS2T
and KA-S2T.

the effect of utilizing numerical category informa-
tion and global relationship information.

3.6 Case Study

Table 5 shows three cases generated by KA-S2T
(Wu et al., 2020) and our NumS2T model. In the
first problem, without numerical values, KA-S2T
incorrectly uses the smaller value to subtract the
larger value when calculating the price difference
between footballs and basketballs. This case
requires the model to choose the larger value
between two numerals. Our NumS2T model
can better handle this problem. In the second
problem, KA-S2T replaces all of the numerals in
the problems with number symbols (v1, v2) and
does not know that v2=20% is not an integer. Our
proposed method can capture numerical values
and numeral category information to generate
correct results. In the third problem, 80 seats
and 52 tickets are strongly semantically related,
so KA-S2T generates the sub-expression “80-52”.
However, this problem is about the fares that have
already been sold rather than how many tickets are
left. With numerical properties, NumS2T is able to
realize that 80 is not related to the target expression
and should not appear in the generated result.

Problem: Each football is worth $ 76, and each
basketball is worth $ 45. The school
bought the same number of basketballs
and footballs, with a price difference
of $ 248. How many footballs did the
school buy?

KA-S2T: 248/(45-76)
NumS2T: 248/(76-45)
Problem: There are 250 pear trees in the orchard,

25% more than peach trees. There are
3 times as many orange trees as pear
trees. How many more orange trees are
there than peach trees?

KA-S2T: (250*3)-(250-25%)
NumS2T: (250*3)-250/(1-25%)
Problem: The concert was held in a hall with 80

seats. 52 tickets have been sold, each
priced at $ 25. How much is the ticket
revenue?

KA-S2T: (80-52)*25
NumS2T: 52*25

Table 5: Three cases of generated expressions by KA-
S2T (Wu et al., 2020) and NumS2T.

4 Related Work

Math Word Problem Solving: In recent years,
Seq2Seq (Sutskever et al., 2014) has been widely
used in math word problem solving tasks (Ling
et al., 2017; Wang et al., 2017b, 2018a). To better
utilize expression structure information, recent
studies have used Seq2Tree models (Liu et al.,
2019; Zhang et al., 2020a). Xie and Sun (2019)
proposed a tree structured decoder that uses a
goal-driven approach to generate expression trees.
Wu et al. (2020) proposed a knowledge-aware
Seq2Tree model with a state aggregation mech-
anism that incorporates common-sense knowledge
from external knowledge bases. Recently, several
methods have attempted to use the contextual
information of the numbers in the problem. Li
et al. (2019) propose a group attention mechanism
to extract quantity-related features and quantity-
pair features. Zhang et al. (2020b) connects each
number in the problem with nearby nouns to enrich
the problem representations.

However, these methods rarely take numerical
values into consideration. They replace all the
numbers in the problems with number symbols
and ignore the vital information provided by the
numerical values in math word problem solving.
As such, these methods will incorrectly generates
the same expression for problems with different

numerical values.
Numerical Value Representations: Some re-
cent studies have explored the numerical value
representations in language models (Naik et al.,
2019; Chen et al., 2019; Wallace et al., 2019).
Spithourakis and Riedel (2018) investigated several
of the strategies used for language models for their
possible application to model numerals. Gong et al.
(2020) proposed the use of contextual numerical
value representations to enhance neural content
planning by helping models to understand data
values. To incorporate numerical value information
into math word solving tasks, we use a digit-to-
digit numerical value encoder to obtain the number-
aware problem representations. To further utilize
the numerical properties, we propose a numerical
properties prediction mechanism.

5 Conclusion

In this study, we proposed a novel approach called
NumS2T, that better captures numerical value
information and utilizes numerical properties. In
this model, we use a digit-to-digit numerical value
encoder to explicitly incorporate numerical values.
In addition, we designed a numerical properties
prediction mechanism that compares the paired
numerical values, determines the category of each
numeral, and measures whether they should appear
in the final expression. Experimental results show
that our proposed NumS2T model outperforms
other state-of-the-art baseline methods.

Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was par-
tially funded by China National Key RD Program
(No. 2018YFB1005100), National Natural Science
Foundation of China (No. 62076069, 61976056),
Shanghai Municipal Science and Technology Ma-
jor Project (No.2021SHZDZX0103).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura,
and Hsin-Hsi Chen. 2019. Numeracy-600K: Learn-
ing numeracy for detecting exaggerated information
in market comments. In Proceedings of the 57th

Annual Meeting of the Association for Computa-
tional Linguistics, pages 6307–6313, Florence, Italy.
Association for Computational Linguistics.

Zhendong Dong, Qiang Dong, and Changling Hao.
2010. HowNet and its computation of meaning. In
Coling 2010: Demonstrations, pages 53–56, Beijing,
China. Coling 2010 Organizing Committee.

Heng Gong, Wei Bi, Xiaocheng Feng, Bing Qin,
Xiaojiang Liu, and Ting Liu. 2020. Enhancing con-
tent planning for table-to-text generation with data
understanding and verification. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2905–2914, Online. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018. Using intermediate
representations to solve math word problems. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 419–428, Melbourne, Australia.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang,
Bing Tian Dai, and Dongxiang Zhang. 2019.
Modeling intra-relation in math word problems
with different functional multi-head attentions. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6162–6167, Florence, Italy. Association for Compu-
tational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 158–167,
Vancouver, Canada. Association for Computational
Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for
solving math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong,
China. Association for Computational Linguistics.

Jiaju Mei. 1985. Tongyi ci cilin. Shangai cishu
chubanshe.

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. In

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P19-1635
https://doi.org/10.18653/v1/P19-1635
https://doi.org/10.18653/v1/P19-1635
https://www.aclweb.org/anthology/C10-3014
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P18-1039
https://doi.org/10.18653/v1/P18-1039
https://arxiv.org/abs/1412.6980v5
https://arxiv.org/abs/1412.6980v5
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/P16-1202

Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2144–2153, Berlin, Germany.
Association for Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Carolyn
Rose, and Eduard Hovy. 2019. Exploring numeracy
in word embeddings. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3374–3380, Florence, Italy.
Association for Computational Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of
the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1743–1752,
Lisbon, Portugal. Association for Computational
Linguistics.

Georgios Spithourakis and Sebastian Riedel. 2018.
Numeracy for language models: Evaluating and
improving their ability to predict numbers. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2104–2115, Melbourne,
Australia. Association for Computational Linguis-
tics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? probing numeracy in embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
5307–5315, Hong Kong, China. Association for
Computational Linguistics.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math
word problem to a expression tree. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1064–1069,
Brussels, Belgium. Association for Computational
Linguistics.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018b.
Mathdqn: Solving arithmetic word problems via
deep reinforcement learning.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing
Xu, Lianli Gao, Bing Tian Dai, and Heng Shen.
2019. Template-based math word problem solvers
with recursive neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 33:7144–
7151.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017a. Gated self-matching
networks for reading comprehension and question
answering. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 189–198,
Vancouver, Canada. Association for Computational
Linguistics.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017b.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
845–854, Copenhagen, Denmark. Association for
Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuanjing
Huang. 2020. A knowledge-aware sequence-to-tree
network for math word problem solving. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7137–7146, Online. Association for Computational
Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-19, pages 5299–5305. International Joint
Conferences on Artificial Intelligence Organization.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei
Qin, Lei Wang, Jie Shao, and Qianru Sun. 2020a.
Teacher-student networks with multiple decoders
for solving math word problem. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, pages 4011–
4017. International Joint Conferences on Artificial
Intelligence Organization. Main track.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
3928–3937, Online. Association for Computational
Linguistics.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/P18-1196
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D18-1132
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16749
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16749
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362
https://github.com/Chenny0808/ape210k
https://github.com/Chenny0808/ape210k

