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Abstract

Adversarial robustness has attracted much at-
tention recently, and the mainstream solution
is adversarial training. However, the tradition
of generating adversarial perturbations for each
input embedding (in the settings of NLP) scales
up the training computational complexity by
the number of gradient steps it takes to ob-
tain the adversarial samples. To address this
problem, we leverage Flooding method which
primarily aims at better generalization and we
find promising in defending adversarial attacks.
We further propose an effective criterion to
bring hyper-parameter-dependent flooding into
effect with a narrowed-down search space by
measuring how the gradient steps taken within
one epoch affect the loss of each batch. Our
approach requires zero adversarial sample for
training, and its time consumption is equiva-
lent to fine-tuning, which can be 2-15 times
faster than standard adversarial training. We
experimentally show that our method improves
BERT’s resistance to textual adversarial attacks
by a large margin, and achieves state-of-the-art
robust accuracy on various text classification
and GLUE tasks.

1 Introduction

Despite their impressive performances on various
NLP tasks, deep neural networks such as BERT
(Devlin et al., 2019) suffer a sharp performance
degradation against deliberately constructed adver-
sarial attacks (Zeng et al., 2021; Nie et al., 2020;
Zang et al., 2020; Ren et al., 2019; Zhang et al.,
2019). A line of work attempts to alleviate this
problem by creating adversarially robust models
via defense methods, including adversarial data
augmentation (Chen et al., 2021; Si et al., 2021),
regularization (Wang et al., 2020a), and adversarial
training (Wang et al., 2020b; Zhu et al., 2019;
Madry et al., 2018). Data augmentation and ad-
versarial training rely on additional adversarial
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examples generated either by hand-crafting or con-
ducting gradient ascent on the clean data for virtual
adversarial samples.

However, generating adversarial examples scales
up the cost of training computationally, which
makes vanilla adversarial training almost impracti-
cal on large-scale NLP tasks like QNLI (Question-
answering NLI, Rajpurkar et al., 2016). An increas-
ing amount of researchers express their concern
about the time-consuming property of standard
adversarial training and offer cheaper but compet-
itive alternatives by (i) replacing the perturbation
generation with an additional generator network
(Baluja and Fischer, 2017; Xiao et al., 2018), or by
(ii) combining the gradient computation of clean
data and perturbations into one backward pass
(Shafahi et al., 2019). These approaches still rely
on additional adversarial examples generated either
by the model itself or by an extra module.

In this work, we propose a novel method,
Flooding-X, to largely improve adversarial robust-
ness without any adversarial examples, maintain-
ing the same computational cost as conventional
BERT fine-tuning. The vanilla Flooding (Ishida
et al., 2020) method is a practical regularization
technique to boost model generalization by pre-
venting further reduction of the training loss when
it reaches a reasonably small value. It results
in a model performing normal gradient descent
when training loss is above the decided value but
gradient ascent when below. By continuing to
“random walk” with the same non-zero value as
a “virtual loss”, the model drifts into an area with a
flat loss landscape that is claimed to lead to better
generalization (Ishida et al., 2020). Interestingly,
we find that Flooding method is also promising in
increasing models’ resistance to adversarial attacks.
Despite the significant rise in robust accuracy, the
so-called reasonably small value, which is a hyper-
parameter, takes effort to be found and varies for
each dataset, which requires an overly extensive



search among the numerous candidates.
In an attempt to narrow down the candidates of

hyper-parameter, we propose gradient accordance
as an informative criterion for optimal values that
bring Flooding into effect, which is used as a
building-block in Flooding-X. We measure how
accordant the gradients of the batches are by
analyzing how the gradient descent steps based on
part of an epoch affect the loss of each batch. Gra-
dient accordance is computationally friendly and
is tractable during training process. Experiments
on various tasks show a close relation between
gradient accordance and overfitting. As a result, we
propose gradient accordance as a reliable flooding
criterion to make the training loss flood around the
level when the model has nearly overfitted. That is
to say, we leverage the training loss of the model
right before overfitting as the value of flood level.

Flooding-X is especially useful and shows great
advantage over adversarial training in terms of
computational cost when the training dataset is
relatively large. Experimental results demonstrate
that our method achieves stated-of-the-art robust
accuracy with BERT on various tasks and improves
its robust accuracy by 100 to 400% without using
any adversarial example, consuming any extra
training time, or conducting overly extensive search
for hyper-parameter. Our main contributions are as
follows.

1) We propose a novel method, Flooding-X, that
achieves state-of-the-art robust accuracy for BERT
on various tasks, which is adversarial-example-free
and takes no more training time than fine-tuning.

2) We propose a promising indicator, i.e. gradi-
ent accordance, to alleviate Flooding method from
tedious search of the hyper-parameter.

3) We conduct comprehensive experiments on
NLP tasks to illustrate the potential of Flooding for
improving BERT’s adversarial robustness.

2 Why Does Flooding Boost Adversarial
Robustness?

2.1 Vanilla Flooding

We first describe the vanilla Flooding regulariza-
tion method (Ishida et al., 2020) for alleviating
overfitting via keeping training loss from reducing
to zero. Under the main assumption that learning
until zero loss is harmful, Ishida et al. (2020)
propose Flooding to intentionally prevent further
reduction of the training loss when it reaches a
reasonably small value, which is called the flood

Figure 1: Input loss landscape of vanilla BERT and
different adversarial training algorithms under Gaussian
random noise of standard deviation α on SST-2 dataset.

level. Intuitively, this approach makes the training
loss float around the pre-defined flood level and
alter from normal mini-batch gradient descent to
gradient ascent if the loss is below the flood level.
With the constraint of flood level, the model will
continue to “random walk” around the non-zero
training loss, which is expected to reach a flat loss
landscape.

The algorithm of Flooding is defined as follow:

J̃(θ) = |J(θ)− b|+ b, (1)

where J denotes the original learning objective,
and J̃ represents the modified learning objective
with flooding. The positive value b is the flood level
specified by user, and θ is the model parameter.
Accordingly, the flooded empirical risk is then
defined as

R̃(f) = |R̂(f)− b|+ b, (2)

within which R̂(f) / R̃(f) denotes the original /
flooded empirical risk respectively, and f refers
to the score function to be learned by the model.
During the back propagation process, the gradient
of R̂(f) w.r.t. model parameters and R̃(f) point
to the same direction when R̃(f) is above b but
to the opposite direction when it is below b. As
a result, model performs normal gradient descent
when the learning objective is above the flood level,
and gradient ascent when below.

2.2 Smooth Parameter Landscape Leads to
Better Robustness

According to the definition described in the previ-
ous section, Flooding does not make any difference
to the training process when the loss is beyond the
flood level. When the training loss approaches the
flood level, on closer inspection, gradient descent



and gradient ascent begin to alternate. Assume that
the model with learning rate ε performs gradient
descent for the n-th batch and then gradient ascent
for batch n+ 1, which results in:

θn = θn−1 − εg(θn−1),

θn+1 = θn + εg(θn).
(3)

In the equations above, g(θ) = ∇θJ(θ) is the
gradient of J(θ) w.r.t. model parameters. We can
then get

θn+1 =θn−1 − εg(θn−1) + εg
(
θn−1

− εg(θn−1)
)
,

(4)

which is, by Taylor expansion, approximately
equivalent to

≈θn−1 − εg(θn−1) + ε
(
g(θn−1)

− ε∇θg(θn−1)g(θn−1)
)

=θn−1 −
ε2

2
∇θ∥g(θn−1)∥2.

(5)

Thus, theoretically, when the training loss is rela-
tively low, the model alters into a new learning
mode where the learning rate is ε2/2 and the
objective is to minimize ∥g(θ)∥2. Generally, the
flooded model is guided into an area with a smooth
parameter landscape that leads to better adversarial
robustness (Prabhu et al., 2019; Yu et al., 2018;
Li et al., 2018a). As is demonstrated in Figure 1,
adversarial training brings about a smoother loss
change to the model when the input embedding is
perturbed by Gaussian random noise.

2.3 Achilles’ Heel of Flooding
Despite its potential in boosting model’s resistance
to adversarial attacks, the optimal flood level has
to be searched by performing exhaustive search
within a wide range at tiny steps, which is not easily
at hand. A relatively large value of flood level
lengthens the gradient steps and keeps the model
from convergence, while a tiny value causes hardly
any difference to the training process. The effect of
Flooding deeply relies on the flood level, which, at
the same time, is also sensitive to the subtle change
of this hyper-parameter. Figure 2 reveals that even
a slight change on the value of flood level can make
a huge difference on the adversarial robustness of
the so-trained model. In an attempt to ease the
effort of searching and make the best of Flooding,
we propose a promising and reliable criterion to
narrow down the search space, which is described
in detail in the next section.

Figure 2: Influence of different flood levels on perfor-
mance of the trained BERT on SST-2. The range marked
in yellow is lined out by our proposed criterion , i.e.,
gradient accordance. The optimal value of flood level is
guaranteed within the narrowed-down space.

3 Gradient Accordance as a Criterion for
Flooding

Since Flooding is proposed as an attempt to avoid
overfitting, we intuitively suppose that the optimal
flood level would be found at the stage when the
model is about to overfit. That is, we leverage
the training loss before overfitting as the flood
level. Inspired by influence function (Koh and
Liang, 2017), we propose gradient accordance
as a criterion for flooding, which is empirically
proved to be reliable and indicative. We consider
the effect of the model updated w.r.t. one epoch
on each of its batches as a signal of overfitting. As
is indicated by its name, this criterion measures
the relation among the gradients of each batch on
epoch level, evaluating whether the model updated
on an epoch has the same positive effect on the
batches on average. Now we provide the formal
definition of gradient accordance.

3.1 Preliminaries

We denote a model as a functional approximation
f which is parameterized by θ. Consider a training
data point x with the ground truth label y, which
results in a loss L(f(θ, x), y). The gradient of the
loss w.r.t. the parameters is thus

g = ∇θL(f(θ, x), y), (6)

whose negation denotes the direction in which
the parameters θ are updated to better correspond
to the desired outputs on the training data (Fort
et al., 2019). Now let’s consider two data points
x1 and x2 with their corresponding labels y1 and
y2. According to the definition above, the gradient
of sample 1 is g1 = ∇θL(f(θ, x1), y1). We try to



inspect how the small change of θ in the direction
−g1 influences the loss on sample x1 or x2:

∆L1 =L(f(θ − εg1, x1), y1)

− L(f(θ, x1), y1),
(7)

where f(θ, x1) can be expanded by Taylor expan-
sion to be:

f(θ, x1) = f(θ − εg1, x1) + εg1
∂f

∂θ
+O(ε2).

(8)
Here, we refer to (εg1

∂f
∂θ +O(ε2)) as T (x1); and

by repeating the similar expansion we can get

L(f(θ, x1), y1)
= L(f(θ − εg1, x1) + T (x1), y1)

= L(f(θ − εg1, x1), y1)

+
∂L
∂f

T (x1) +O(T 2(x1)).

(9)

Equation (7) is thus equal to

∆L1 = −∂L
∂f

T (x1)−O(T 2(x1))

= −∂L
∂f

(εg1
∂f

∂θ
+O(ε2))

= −εg1 · g1 −O(ε2).

(10)

Similarly, the change of the loss on x2 caused by
the gradient update by x1 is ∆L2 = −εg1 · g2 −
O(ε2). Notably, ∆L1 is negative by definition
since the model is updated with respect to x1 and
naturally leads to a decrease on its loss. The model
updated on x1 is considered to have a positive effect
on x2 if ∆L2 is also negative while an opposite
effect if positive. The equations above demonstrate
that this co-relation is equivalent to the overlap
between the gradients of the two data points g1 ·g2,
which we hereafter refer to as gradient accordance.

3.2 Coarse-Grained Gradient Accordance
Data-point-level gradient accordance is too fine-
grained to be tractable in practice. Thus, we
attempt to scale it up and result in coarse-grain
gradient accordance at batch level, which is compu-
tationally tractable and still reliable as a criterion
for overfitting.

Consider a training batch B0 with n
samples X = {x1, x2, . . . , xn} and labels
y = {y1, y2, . . . , yn} of k classes {c1, c2, . . . , ck}.
These samples can be divided into k groups
according to their labels X = X1∪X2∪· · ·∪Xk,

and so are the labels y =
⋃k

i=1 yi, where all the
samples in Xm belong to class cm. Thus, we have
the sub-batch B1

0 = {X1,y1}. We then define
class accordance score of two sub-batches B1

0 and
B2

0 of classes c1 and c2 as:

C(B1
0 , B

2
0) = E[cos(g1, g2)], (11)

where g1 is the gradient of the training loss of
sub-batch B1

0 w.r.t. the model parameters, and
cos(g1, g2) = (g1/|g1|) · (g2/|g2|). Class ac-
cordance measures whether the gradient taken with
respect to a sub-batch B1

0 of class c1 will also
decrease the loss for samples in another sub-batch
B2

0 of class c2 (Fort et al., 2019; Fu et al., 2020).
Further consider that there are N batches in

one training epoch and the training samples are
of k classes. The batch accordance score between
batches Bs and Bt is defined as

Sbatch accd(Bs, Bt)

=
1

k(k − 1)

k∑
j=1

k∑
i=1
i ̸=j

C(Bi
s, B

j
t ).

(12)

Batch accordance quantifies the learning consis-
tency of two batches by evaluating how the model
updated on one batch affects the other. To be
more specific, a positive batch accordance denotes
that the measured two batches are under the same
learning pace since the model updated according
to each batch benefits them both. The gradient
accordance of certain epoch (or a part of an epoch,
namely the sub-epoch) is finally defined as

Sepoch accd =

1

N(N − 1)

N∑
j=i+1

N−1∑
i=1

Sbatch accd(Bs, Bt).
(13)

Gradient accordance scales the batch accordance
score up from a measure of two batches to that of a
sub-epoch.

Criterion for Flooding A positive gradient ac-
cordance means that the model performed gradient
descent w.r.t. the certain epoch decreases the loss of
its batches on average, indicating that the learning
pace of most batches are in line with each other. A
negative one means that the model has overfitted
to some of the training batches since the update
of one epoch increases the loss of its batches on
average, which is right the stage we would like to



identify for the model by gradient accordance. We
assume that the optimal flood level lies in the range
of the training loss of a model when it is about to
overfit. In the following section, we empirically
prove that gradient accordance is a reliable and
promising criterion for flooding.

4 Experiments

In this section, we provide comprehensive analysis
on Flooding-X through extensive experiments on
five text classification datasets of various tasks and
scales: SST (Socher et al., 2013), MRPC (Dolan
and Brockett, 2005), QNLI (Rajpurkar et al., 2016),
IMDB (Maas et al., 2011) and AG News (Zhang
et al., 2015). We conduct experiments on BERT-
base (Devlin et al., 2019) and compare robust
accuracy of Flooding-X with other adversarial
training algorithms to demonstrate its strength. We
implement all models in MindSpore.

4.1 Baseline Methods

We compare our proposed Flooding-X with three
adversarial training algorithms and one regulariza-
tion method.

PGD Projected gradient descent (PGD, Madry
et al., 2018) formulates adversarial training algo-
rithms into solving a minimax problem that mini-
mizes the empirical loss on adversarial examples
that can lead to maximized adversarial risk.

FreeLB Zhu et al. (2019) propose FreeLB to
improve the generalization of language models.
By adding adversarial perturbations to word em-
beddings, FreeLB generates virtual adversarial
samples inside the region around input samples.

TAVAT Token-Aware Virtual Adversarial Train-
ing (TAVAT, Li and Qiu, 2021) aims at fine-grained
perturbations, leveraging a token-level accumu-
lated perturbation vocabulary to initialize the per-
turbations better and constraining them within a
token-level normalization ball.

InfoBERT InfoBERT (Wang et al., 2020a) lever-
ages two mutual-information-based regularizers for
robust model training, suppressing noisy mutual
information while increasing mutual information
between local stable features and global features.

4.2 Attack Methods and Evaluation Metrics

Three well-received attack methods are leveraged
via TextAttack (Morris et al., 2020) for an extensive

comparison between our proposed method and
baseline algorithms.

TextFooler (Jin et al., 2020) identifies the impor-
tant words for target model and repeats replacing
them with synonyms until the prediction of the
model is altered. Similarly, TextBugger (Li et al.,
2018b) also searches for important words and
modifies them by choosing an optimal perturbation
from the generated several kinds of perturbations.
BERTAttack (Li et al., 2020) applies BERT in a
semantic-preserving way to generate substitutes for
the vulnerable words detected in the given input.

We consider four evaluation metrics to measure
BERT’s resistance to the mentioned adversarial
attacks under different defence algorithms.

Clean% The clean accuracy refers to the model’s
test accuracy on the original clean dataset.

Aua% Accuracy under attack measures the
model’s prediction accuracy on the adversarial data
deliberately generated by certain attack method. A
higher Aua% means a more robust model and a
better defender.

Suc% Attack success rate is evaluated by the
ratio of the number of texts successfully perturbed
by a specific attack method to the number of all
the involved texts. Robust models are expected to
score low at Suc%.

#Query Number of queries denotes the average
attempts the attacker queries the target model. The
larger the number is, the harder the model is to be
attacked.

4.3 Implementation Details

All the baseline methods are re-implemented based
on their open-released codes and the results are
competing to those reported. We train our models
on NVIDIA RTX 3090 and RTX 2080Ti GPUs,
depending on the volume of the dataset involved.
Most of the parameters such as learning rate and
warm-up step are in line with vanilla BERT (Devlin
et al., 2019) and the baseline methods. For all of
the adversarial methods we set the training step
to be 5 for a fair comparison, which is a trade-off
between training cost and model performance . The
clean accuracy (Clean%) is tested on the whole test
dataset. The other three metrics (e.g., Aua%, Suc%
and #Query) are evaluated on the whole test dataset
for SST-2 and MRPC, and 800 randomly chosen
samples for IMDB, AG NEWS, and QNLI. We



Datasets Methods Clean% TextFooler BERT-Attack TextBugger
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

IMDB

BERT 95.0 24.5 74.2 1533.15 20.3 76.1 2237.38 48.7 47.7 1160.35
PGD 95.0 26.3 72.1 1194.08 21.3 77.2 1465.83 52.3 46.7 982.02
FreeLB 97.0 29.5 69.9 1816.26 27.6 69.7 1975.21 51.6 45.9 921.35
TAVAT 95.5 27.6 71.9 1205.80 23.1 75.1 2244.77 54.1 44.1 1022.56
InfoBERT 96.3 27.4 72.3 1094.55 20.8 78.3 1428.67 49.8 49.3 1215.39
Flooding 95.0 39.5 58.4 1783.17 28.1 68.4 2239.45 57.2 40.8 2438.17
Flooding-X 97.5 40.5 58.5 2315.35 32.3 65.8 2248.71 62.3 35.8 2987.95

AG NEWS

BERT 94.9 20.5 78.9 372.14 6.5 93.1 477.34 42.7 54.6 192.75
PGD 94.8 37.2 60.8 428.13 32.8 65.7 704.78 58.2 39.1 252.87
FreeLB 94.7 32.3 65.9 405.66 12.7 86.7 573.38 48.8 49.1 210.17
TAVAT 95.2 39.7 58.3 441.11 23.7 75.2 672.52 55.9 41.5 234.01
InfoBERT 94.6 29.2 69.1 406.32 15.6 83.3 598.25 50.7 46.7 201.66
Flooding 94.8 38.8 59.1 440.31 25.9 73.0 679.31 60.6 36.3 207.51
Flooding-X 94.9 42.4 54.9 451.35 27.4 71.0 690.27 62.2 34.0 222.49

SST-2

BERT 92.7 10.8 88.4 111.81 8.8 90.6 149.84 41.3 55.8 54.37
PGD 92.8 16.6 82.1 129.33 11.7 87.7 158.80 43.7 53.8 52.49
FreeLB 92.2 15.4 83.3 128.19 12.1 87.1 160.81 45.1 51.9 53.32
TAVAT 93.0 19.6 79.0 132.85 14.4 85.4 122.95 43.4 54.6 48.46
InfoBERT 92.9 18.6 79.5 114.67 16.6 82.8 138.74 43.2 53.6 50.97
Flooding 93.4 26.4 71.7 147.83 24.6 73.7 189.43 48.3 45.3 58.29
Flooding-X 93.1 34.9 62.4 149.61 27.7 70.7 199.37 51.7 45.3 60.55

QNLI

BERT 91.6 5.3 94.2 161.88 3.5 96.1 216.46 10.9 88.0 98.39
PGD 90.6 28.1 68.9 269.38 24.0 73.6 399.91 33.8 62.8 154.55
FreeLB 90.7 23.3 74.3 243.24 14.6 83.9 294.14 17.1 81.3 136.85
InfoBERT 90.4 23.1 76.5 250.87 11.05 88.8 268.91 12.8 86.9 127.93
Flooding 91.4 24.8 72.9 248.76 24.9 72.4 349.71 27.1 69.8 126.37
Flooding-X 90.8 27.9 69.27 251.17 26.2 71.2 364.06 29.5 67.5 137.12

MRPC

BERT 87.8 6.4 92.8 167.59 7.4 91.5 186.97 12.0 86.2 96.82
PGD 84.3 6.9 92.2 169.01 11.5 86.3 207.90 14.5 82.9 99.90
FreeLB 83.8 8.2 91.0 150.23 10.3 87.7 193.67 12.5 85.1 96.61
InfoBERT 87.7 9.1 86.6 178.16 15.0 77.9 201.26 15.9 76.5 98.87
Flooding 87.0 15.9 81.7 245.85 16.7 80.4 243.65 19.2 77.2 101.98
Flooding-X 88.9 19.9 77.1 263.05 19.4 77.7 251.44 22.3 74.3 114.23

Table 1: Experimental results of different models’ defense performances on five datasets. The best performance is
marked in bold. Clean% stands for the accuracy tested on the original clean dataset. Aua% is short for accuracy
under attack, and Sus% is the attack success rate of the textual attack methods. Notably, a lower Sus% is expected
for a more robust model.

train 10 epochs for each model on each dataset,
among which the last epochs are selected for the
comparison of adversarial robustness.

4.4 Experimental Results
The extensive results of all the above mentioned
methods are summarized in Table 1. Generally, our
Flooding-X method improves BERT by a large
margin in terms of its resistance to adversarial
attacks, surpassing the baseline adversarial training
algorithms on most datasets under different attack
methods.

Under TextFooler attack (Jin et al., 2020), our
algorithm reaches the best robust performance on
four datasets: IMDB, AG News, SST-2, and MRPC.
We observe that Flooding is more effective on
smaller datasets than larger ones, since the smaller
datasets with shorter training sentences are easier to
be memorized by the neural network and are more
likely to cause overfitting. On QNLI dataset where
Flooding-X fails to win, the accuracy under attack

is only 0.2 points lower than the 5-step PGD. This
might be explained by the mild change in gradient
accordance during training on QNLI dataset, in
which case the precise stage of overfitting is hard
to be identified. Though we believe that a better
value of flood level exists and can further boost
the performance, we refuse to take on the pattern
of extensive hyper-parameter searching which is
against the original purpose of Flooding-X.

Notably, our method performs better than the
baseline adversarial training methods by 5 to 20
points on average even without using any adver-
sarial examples as training source, not to men-
tion the vanilla BERT. Under most cases, our
method remains the best performing algorithm fac-
ing BERTAttack (Li et al., 2020) and TextBugger
(Li et al., 2018b). This proves that our method
maintains effectiveness under different kinds of
adversarial attacks. As a byproduct, the clean accu-
racy of our method is also the best among all the



baseline methods, which is inherent to the vanilla
Flooding that aims at better generalization. In the
cases of AG News and QNLI, our re-implement
the results of BERT fine-tuning to 97.0 and 91.6
respectively so Flooding-X does not surpass the
reported performance, but still outperforming the
baselines of our implementation.

5 Analysis and Discussion

In this section, we construct supplementary ex-
periments to further analyze the effectiveness of
Flooding-X and its building block, i.e., gradient
accordance.

5.1 Does Gradient Accordance Capture
Overfitting?

Influence function (Koh and Liang, 2017) inspects
the influence of one single training data on the
model prediction and stiffness (Fort et al., 2019)
measures how the model updated according to one
sample affects the model prediction on another.
Based on these two works, gradient accordance
is proposed as a means for identifying model
overfitting at sub-epoch level.

As seen in Figure 3, during training process, the
turning point of gradient accordance from negative
to positive closely matches the point when the test
loss is about to increase, which is well received as
a signal of overfitting. Since it is computationally
intractable to calculate gradient accordance after
trained on every single batch, we can only figure
out the range where the model is about to overfit by
computing gradient accordance at sub-epoch level.

Figure 3: Gradient accordance and training/test loss
of each BERT epoch finetuned on SST-2 and MRPC
datasets. The grey dashed line represents zero gradient
accordance, above which is the model considered to
be overfitted. The region marked in yellow and green
are the ranges of training iterations where the gradient
accordance changes from positive to negative for MRPC
and SST-2 respectively.

Figure 4: Loss and Aua% (accuracy under attack) of
BERT trained on SST-2 under different methods. Flood-
ing prevents the training loss from approaching zero and
results in great improvement of BERT’s resistance to
adversarial attacks.

5.2 How does Flooding-X Help with
Robustness?

Despite its outstanding performance of the last
training epoch, we find that Flooding-X boosts the
robustness of model at an earlier stage than stan-
dard fine-tuning and adversarial training methods
like FreeLB. As is shown in Figure 4, Flooding-X
improves BERT’s adversarial robustness to a rela-
tively high level at epoch 5, which is competitive
with that of standard fine-tuning at the last epoch.
Besides, Flooding-X accelerates the increase of
robustness at late training stage. Starting from
epoch 7 our method enables a steep increment on
the accuracy under attack, which is due to the effect
of Flooding that forces the model to perform a more
fierce “random walk” since the training loss of most
batches are going below the flooding level. It is also
demonstrated that the training loss stops approach-
ing zero under the constraint of Flooding-X, while
the standard fine-tuning and adversarial training
continues to decrease the training loss towards zero
which brings about the risk of overfitting.

5.3 Time Consumption

To further reveal the strength of Flooding-X besides
its robustness performance, we compare its GPU
training time consumption with baseline methods
on several datasets of different sizes. For a fair
comparison, every model of each dataset is trained
on single NVIDIA RTX 2080Ti GPU with the same
batch size, among which models on SST-2 are
trained with a batch size of 32 while QNLI and
IMDB are trained with 8 and 4 respectively since
the training sentences are way longer than SST-2.
As is demonstrated in Table 2, the time consump-



Method SST-2 QNLI IMDB

Finetune 260 1, 193 1, 059

Flooding-X 272 1,222 1,087

TAVAT 967 4, 105 4, 609

FreeLB 1, 041 4, 340 4, 457

PGD 1, 305 5, 571 5, 664

InfoBERT 2, 174 12, 077 19, 279

Table 2: GPU time consumption (seconds) of training
one epoch on the whole dataset. Flooding-X costs nearly
the same as fine-tuning and 2-15 times less than the
baseline adversarial training algorithms.

tion (seconds) of Flooding-X is competitive with
standard fine-tuning, which is far less than that of
adversarial training algorithms.

6 Related Work

Adversarial Training Adversarial training (AT)
is a well-received method for defending adversarial
attacks. As an attempt against adversarial attacks,
AT generates gradient-based adversarial samples
and leverage them for further training (Goodfellow
et al., 2014). A line of work tries different means
for the generation of adversarial examples. The
PGD algorithm (Madry et al., 2018), compared
as a baseline method in our experiments, involves
multiple projected gradient ascent steps to find the
adversarial perturbations which are then used for
updating the model parameters. However, it is
computationally expensive and has aroused many
attempts to cut down on the cost. Shafahi et al.
(2019) and Zhu et al. (2019) focus on finding better
adversarial sample while maintaining a low cost.

Despite gradient-based methods which generates
adversarial perturbations on the continuous input
embedding, some works tailor AT for NLP fields.
The adversarial examples are generated by replac-
ing the original texts based on certain rules such as
semantic similarity (Alzantot et al., 2018; Jin et al.,
2020; Li et al., 2020). Ebrahimi et al. (2018) pro-
pose a perturbation strategy that conducts character
insertion, deletion, and replacement. Jia and Liang
(2017) mislead MRC models via a human-involved
phrase generation method.

The mentioned algorithms of AT generates ad-
ditional adversarial examples either by calculating
gradients or by human force, which is computation-
ally expensive and effort taking.

Overfitting and Criterion Deep neural networks
are shown to suffer from overfitting to training
configurations and memorise training scenarios
(Takeoka et al., 2021; Rodriguez et al., 2021;
Roelofs et al., 2019; Werpachowski et al., 2019),
which leads to poor generalization and vulnerabil-
ity towards adversarial perturbations.

One way of identifying overfitting is to see
whether the generalization gap, i.e., the test minus
the training loss, is increasing or not (Goodfellow
et al., 2016). Ishida et al. (2020) further decompose
the situation of the generalization gap increasing
into two stages: The first stage is when training and
test losses are both decreasing, but the former is
decreasing faster then the latter. The next stage
is when the training loss is decreasing but the
test loss is increasing, after which the training
loss continues to approach zero and memorize the
training data completely (Zhang et al., 2021; Belkin
et al., 2018; Arpit et al., 2017). Derived from
influence function (Koh and Liang, 2017), Fort
et al. (2019) propose the concept of Stiffness as a
new perspective of generalization. They measure
how stiff a network is by looking at how a small
gradient step in the network parameters on one
example affects the loss on another example. This
criterion carries is theoretically proved to have a
close relation with generalization and overfitting.
However, from the practical perspective, it is com-
putationally intractable to compute the stiffness
between every single sample during the process of
standard training where thousands of samples are
involved in one batch.

7 Conclusion

In this work, we propose Flooding-X as an ef-
ficient and computational-friendly algorithm for
improving BERT’s resistance to adversarial attacks.
We first theoretically prove that the vanilla Flood-
ing method is able to boost model’s adversarial
robustness by leading it into a smooth parameter
landscape. We further propose a promising and
computationally tractable criterion, Gradient Ac-
cordance, to detect when the model is about to
overfit and accordingly narrow down the hyper-
parameter space for Flooding with an optimal flood
level guaranteed. Experimental results prove that
gradient accordance is closely related with the
phenomenon of overfitting, equipped with which
Flooding-X beats the well-received adversarial
training methods and achieves state-of-the-art per-



formances on various NLP tasks facing different
textual attack methods. This implies that adversar-
ial examples, either generated by gradient-based
algorithms or human efforts, are not a must for the
improvement of adversarial robustness. We call for
further exploring and deeper understanding in the
nature of adversarial robustness and attacks.
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