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Abstract

Recent works on Lottery Ticket Hypothesis
have shown that pre-trained language models
(PLMs) contain smaller matching subnetworks
(winning tickets) capable of reaching accuracy
comparable to the original models. However,
these tickets proved to be not robust to
adversarial examples, and even worse than their
PLM counterparts. To address this problem,
we propose a novel method based on learning
binary weight masks to identify Robust Tickets
hidden in the original PLMs. Since the loss
is not differentiable for the binary mask, we
assign the hard concrete distribution to the
masks and encourage their sparsity using a
smoothing approximation of L0 regularization.
Furthermore, we design an adversarial loss
objective to guide the search for Robust Tickets
and ensure that the tickets perform well both
in accuracy and robustness. Experimental
results show the significant improvement of
the proposed method over previous work on
adversarial robustness evaluation.

1 Introduction

Large-scale pre-trained language models (PLMs),
such as BERT (Devlin et al., 2019), Roberta
(Liu et al., 2019) and T5 (Raffel et al., 2019)
have achieved great success in the field of natural
language processing. As more transformer layers
are stacked with larger self-attention blocks, the
complexity of PLMs increases rapidly. Due to
over-parametrization of PLMs, some Transformer
heads and even layers can be pruned without
significant losses in performance (Michel et al.,
2019; Kovaleva et al., 2019; Rogers et al., 2020).

The Lottery Ticket Hypothesis suggests an over-
parameterized network contains certain subnet-
works (i.e., winning tickets) that can match the
performance of the original model when trained
in isolation (Frankle and Carbin, 2019). Chen
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et al. (2020); Prasanna et al. (2020) also find
these winning tickets exist in PLMs. Chen et al.
(2020) prune BERT in an unstructured fashion
and obtain winning tickets at sparsity from 40%
to 90%. Prasanna et al. (2020) aim at finding
structurally sparse tickets for BERT by pruning
entire attention heads and MLP. Previous works
mainly focused on using winning tickets to reduce
model size and speed up training time (Chen et al.,
2021), while little work has been done to explore
more benefits, such as better adversarial robustness
than the original model.

As we all know, PLMs are vulnerable to
adversarial examples that are legitimately crafted
by imposing imperceptible perturbations on normal
examples (Jin et al., 2020; Garg and Ramakrishnan,
2020). Recent studies have shown that pruned
subnetworks of PLMs are even less robust than
their PLM counterparts (Xu et al., 2021; Du et al.,
2021). Xu et al. (2021) observes that when fine-
tuning the pruned model again, the model yields
a lower robustness. Du et al. (2021) clarify the
above phenomenon further: the compressed models
overfit on shortcut samples and thus perform
consistently less robust than the uncompressed
large model on adversarial test sets.

In this work, our goal is to find robust PLM
tickets that, when fine-tuned on downstream tasks,
achieve matching test performance but are more
robust than the original PLMs. In order to make
the topology structure of tickets learnable, we
assign binary masks to pre-trained weights to
determine which connections need to be removed.
To solve discrete optimization problem of binary
masks, we assume the masks follow a hard
concrete distribution (a soft version of the Bernoulli
distribution), which can be solved using Gumbel-
Softmax trick (Louizos et al., 2018). We then
use an adversarial loss objective to guide the
search for Robust Tickets and an approximate LO

regularization is used to encourage the sparsity of



Robust Tickets. Robust Tickets can be used as
a robust substitute of original PLMs to fine-tune
downstream tasks. Experimental results show that
Robust Tickets achieve a significant improvement
in adversarial robustness on various tasks and
maintain a matching accuracy. Our codes are
publicly available at Github1.

The main contributions of our work are summa-
rized as follows:

• We demonstrate that PLMs contain Robust
Tickets with matching accuracy but better
robustness than the original network.

• We propose a novel and effective technique to
find the Robust Tickets based on learnable
binary masks rather than the traditional
iterative magnitude-based pruning.

• We provide a new perspective to explain
the vulnerability of PLMs on adversarial
examples: some weights of PLMs do not
contribute to the accuracy but may harm the
robustness.

2 Related Work

2.1 Textual Adversarial Attack and Defense

Textual attacks typically generate explicit adver-
sarial examples by replacing the components of
sentences with their counterparts and maintaining
a high similarity in semantics (Ren et al., 2019)
or embedding space (Li et al., 2020). These
adversarial attackers can be divided into character-
level (Gao et al., 2018), word-level (Ren et al.,
2019; Zang et al., 2020; Jin et al., 2020; Li et al.,
2020) and multi-level (Li et al., 2018). In response
to adversarial attackers, various adversarial defense
methods are proposed to improve model robustness.
Adversarial training solves a min-max robust
optimization and is generally considered as one of
the strongest defense methods (Madry et al., 2018;
Zhu et al., 2020; Li and Qiu, 2020). Adversarial
data augmentation (ADA) has been widely adopted
to improve robustness by adding textual adversarial
examples during training (Jin et al., 2020; Si et al.,
2021). However, ADA is not sufficient to cover
the entire perturbed search space, which grows
exponentially with the length of the input text.
Some regularization methods, such as smoothness-
inducing regularization (Jiang et al., 2020) and
information bottleneck regularization (Wang et al.,

1https://github.com/ruizheng20/Robust_Ticket

2021), are also beneficial for robustness. Different
from the above methods, we dig a robust network
from original BERT, and the subnetworks we find
have better robustness through fine-tuning.

2.2 Lottery Ticket Hypothesis
Lottery Ticket Hypothesis (LTH) suggests the
existence of certain sparse subnetworks (i.e.,
winning tickets) at initialization that can achieve
almost the same test performance compared to the
original model (Frankle and Carbin, 2019). In the
field of NLP, previous work finds that the winning
tickets also exist in Transformers and LSTM (Yu
et al., 2020; Renda et al., 2020). Evci et al.
(2020) propose a method to update the topology
of the sparse network during training without
sacrificing accuracy relative to existing dense-to-
sparse training methods. (Chen et al., 2020) find
that PLMs such as BERT contain winning tickets
with a sparsity of 40% to 90%, and the winning
tickets found in the mask language modeling task
can universally be transfered to other downstream
tasks. Prasanna et al. (2020) find structurally sparse
winning tickets for BERT, and they notice that all
subnetworks (winning tickets and randomly pruned
subnetworks) have comparable performance when
fine-tuned on downstream tasks. Chen et al. (2021)
propose an efficient BERT training method using
Early-bird lottery tickets to reduce the training time
and inference time. Some recent studies have tried
to dig out more features of winning tickets. Zhang
et al. (2021) demonstrate that even in biased models
(which focus on spurious correlations) there still
exist unbiased winning tickets. Liang et al. (2021)
observe that at a certain sparsity, the generalization
performance of the winning tickets can not only
match but also exceed that of the full model. Our
work makes the first attempt to find the robust
winning tickets for PLMs. (Du et al., 2021; Xu
et al., 2021) show that the winning tickets that only
consider accuracy are over-fitting on easy samples
and generalize poorly on adversarial examples.

2.3 Robustness in Model Pruning
Learning to identify a subnetwork with high
adversarial robustness is widely discussed in the
field of computer vision. Post-train pruning
approaches require a pre-trained model with
adversarial robustness before pruning (Sehwag
et al., 2019; Gui et al., 2019). In-train pruning
methods integrate the pruning process into the
robust learning process, which jointly optimize



the model parameters and pruning connections
(Vemparala et al., 2021; Ye et al., 2019). Sehwag
et al. (20) integrate the robust training objective into
the pruning process and remove the connections
based on importance scores. In our work, we focus
on finding Robust Tickets hidden in original PLMs
rather than pruning subnetworks from a robust
model.

3 The Robust Ticket Framework

In this section, we propose a novel pruning method
to extract Robust Tickets of PLMs by learning
binary weights masks with an adversarial loss
objective. Furthermore, we articulate the robust
lottery ticket hypothesis: the full PLM contains sub-
networks (Robust Tickets) that can achieve better
adversarial robustness and comparable accuracy.

3.1 Revisiting Lottery Ticket Hypothesis

Denote f(θ) as a PLM with parameters θ that
has been fine-tuned on a downstream task. A
subnetwork of f(θ) can be denoted as f(m ⊙ θ),
where m are binary masks with the same dimension
as θ and ⊙ is the Hadamard product operator. LTH
suggests that, for a network initialized with θ0, the
Iterative Magnitude Pruning (IMP) can identify a
mask m, such that the subnetwork f(x;m ⊙ θ0)
can be trained to almost the same performance
to the full model f(θ0) in a comparable number
of iterations. Such a subnetwork f(x;m ⊙ θ0)
is called as winning tickets, including both the
structure mask m and initialization θ0. IMP
iteratively removes the weights with the smallest
magnitudes from m⊙ θ until a certain sparsity is
reached. However, the magnitude-based pruning
is not suitable for robustness-aware techniques
(Vemparala et al., 2021; Sehwag et al., 20).

3.2 Discovering Robust Tickets

Our goal is to learn the sparse subnetwork, however,
the training loss is not differentiable for the binary
masks. A simple choice is to adopt a straight-
through estimator to approximate the derivative
(Bengio et al., 2013). Unfortunately, this approach
ignores the Heaviside function in the likelihood
and results in biased gradients.

In our method, we assume each mask mi to be a
independent random variable that follows a hard
concrete distribution HardConcrete(logαi, βi)
with temperature βi and location αi (Louizos et al.,

2018):

µi ∼ U (0, 1) , (1)

si = σ

(
1

βi

(
log

µi

1− µi
+ logαi

))
, (2)

mi = min (1,max (0, si (ζ − γ) + γ)) , (3)

where σ denotes the sigmoid, γ = −0.1, ζ = 1.1
are constants, and ui is the sample drawn from
uniform distribution U(0, 1). The random variable
si follows a binary concrete (or Gumbel-Softmax)
distribution, which is a smoothing approximation
of the discrete Bernoulli distribution (Maddison
et al., 2017; Jang et al., 2017). Samples from
the binary concrete distribution are identical
to samples from a Bernoulli distribution with
probability αi as βi → 0. The location αi in
(2) allows for gradient-based optimization through
reparametrization tricks. Using (3), the si larger
than 1−γ

ζ−γ is rounded to 1, whereas the value smaller
than −γ

ζ−γ is rounded to 0. To encourage the sparsity,
we penalize the L0 complexity of masks based on
the probability which are non-zero:

R(m) =
1

|m|

|m|∑
i=1

σ

(
logαi − βi log

−γ

ζ

)
. (4)

During the inference stage, the mask m̂i can be
estimated through a hard concrete gate:

min (1,max (0, σ (logαi) (ζ − γ) + γ)) . (5)

3.2.1 Adversarial Loss Objective
To find the connections responsible for adversarial
robustness, we incorporate the adversarial loss into
the training objective of masks:

min
m

E(x,y)∼D max
∥δ∥≤ϵ

L (f(x+ δ;m⊙ θ), y)︸ ︷︷ ︸
Ladv(m)

, (6)

where (x, y) is a data point from dataset D, δ is the
perturbation that constrained within the ϵ ball. The
inner maximization problem in (6) is to find the
worst-case adversarial examples to maximize the
classification loss, while the outer minimization
problem in (6) aims at optimizing the masks to
minimize the loss of adversarial examples, i.e.,
Ladv(m).

Adversarial attack method, typically with PGD,
can be used to solve the inner maximization
problem. PGD applies the K-step stochastic



gradient descent to search for the perturbation δ
(Madry et al., 2018):

δk+1 =
∏

∥δ∥≤ϵ

(
δk + η

g (δk)

∥g (δk)∥

)
, (7)

where g (δk) = ∇xL (f(x+ δk;m⊙ θ), y), δk
is the perturbation in k-th step and

∏
∥δ∥≤ϵ(·)

projects the perturbation back onto the Frobenius
normalization ball. Then robust training optimizes
the network on adversarially perturbed input x+δK .
Through the above process, we can conveniently
obtain a large number of adversarial examples for
training.

By integrating the L0 complexity regularizer into
the training process of masks, our adversarial loss
objective becomes:

min
m

Ladv(m) +R(m), (8)

where λ denotes regularization strength.

3.2.2 Effect of Regularization Strength
The selection of the regularization strength λ
decides the quality of Robust Tickets. Results
carried on SST-2 in Fig.1 show that eventually
more than 90% of the masks will be very close to 0
or 1, and the L0 complexity regularizer R(m) will
converge to a fixed value. As λ increases, R(m)
decreases (the sparsity of subnetwork increases).
In practice, the percentage of binary masks is a
promising indicator to choose a suitable λ. This
is because we can prune subnetworks at arbitrary
sparsity based on the confidence of masks (we
show it in the next section). The training of the
adversarial loss objective in (8) is insensitive to the
λ, and in all experiments, λ is chosen in the range
[0.1, 1]. In the appendix A, we will show more
about the learning process of masks.

3.3 Drawing and Retraining Winning Tickets
After training the masks m, we use the location
parameters logα of masks to extract robust sub-
networks. For the Gumbel-Softmax distribution in
(2), αi is the expectation of random variable si, i.e,
E{si} = αi. Thus, we prune the weights whose
masks have the smallest expectation. We prune
all attention heads and intermediate neurons in an
unstructured manner, which empirically has better
performance than structured pruning. Unlike the
Lottery Ticket Hypothesis that requires iterative
magnitude pruning, the proposed method is a one-
shot pruning method that can obtain subnetworks of
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Figure 1: Effect of regularization strength λ on
regularizer R(m), and the percentage of masks that
exact 0 and 1.

any sparsity. Then we fine-tune the Robust Tickets
f(m⊙ θ0) on downstream tasks.

3.4 Robust Lottery Tickets Hypothesis

In the context of adversarial robustness, we
seek a winning ticket that balances accuracy and
robustness, which is more challenging.

Robust Lottery Tickets Hypothesis: A pre-
trained language model, such as BERT, contains
some subnetworks (Robust Tickets) initialized by
pre-trained weights, and when these subnetworks
are trained in isolation, they can achieve better
adversarial robustness and comparable accuracy.
In addition, robust tickets retains an important
characteristic of traditional lottery tickets —the
ability to speed up the training process.

4 Experiments

Following the official BERT implementation (De-
vlin et al., 2019; Wolf et al., 2020), we use
BERTBASE as our backbone model for all experi-
ments. We fine-tune the original BERT and Robust
Tickets using the default settings on downstream
tasks, see appendix B.1 for details. We implement
all models in MindSpore.

4.1 Datasets

We experiments on three text classification datasets:
Internet Movie Database (IMDB, Maas et al.,
2011) , AG News corpus (AGNEWS, Zhang et al.,
2015) and Stanford Sentiment Treebank of binary
classification (SST-2, Socher et al., 2013). We also
test our method on other types of tasks in GLUE,
such as MNLI, QNLI, QQP.



4.2 Baseline Methods

The proposed method is primarily compared with
recently proposed adversarial defense methods and
the standard LTH.

FreeLB(Zhu et al., 2020) An enhanced gradient-
based adversarial training method which is not tar-
geted at specific attack methods. InfoBERT(Wang
et al., 2021) A learning framework for robust
model fine-tuning from an information-theoretic
perspective. This method claims that it has
obtained a better representation of data features.
LTH(Chen et al., 2020) For a range of downstream
tasks, they find BERT contains winning tickets
(matching subnetworks) at 40% to 90% sparsity.
RobustT The Robust Tickets selected from the
original BERT by our proposed method. Random
The subnetworks with the same layer-wise sparsity
of the above Robust Tickets, but their structures are
randomly pruned from the original BERT.

4.3 Robust Evaluation

Three widely accepted attack methods are used to
verify the ability of our proposed method against
baselines (Li et al., 2021). The specific parameters
of these attackers can be found in appendix B.2.
BERT-Attack (Li et al., 2020) is a method using
BERT to generate adversarial text, and thus the
generated adversarial examples are fluent and
semantically preserved. TextFooler (Jin et al.,
2020) first identify the important words in the
sentences, and then replace them with synonyms
that are semantically similar and grammatically
correct until the prediction changes. TextBugger
(Li et al., 20 1) is an adversarial attack method
that generates misspelled words by using character-
level and word-level perturbations.

The evaluation metrics adopted in our exper-
imental analyses are listed as follows: Clean
accuracy (Clean%) denotes the accuracy on
the clean test dataset. Accuracy under attack
(Aua%) refers to the model’s prediction accuracy
facing specific adversarial attacks. Attack success
rate (Suc%) is the ratio of the number of texts
successfully perturbed by an attack method to the
total number of texts to be attempted. Number of
Queries (#Query) is the average number of times
the attacker queries the model, which means the
more the average query number is, the harder the
defense model is to be compromised.

For a robust method, higher clean accuracy, ac-
curacy under attack, and query times are expected,

as well as lower attack success rate.

4.4 Implementation Details
The K-step PGD requires K forward-backward
passes through the network, which is time consum-
ing. Thus, we turn to FreeLB, which accumulates
gradients in multiple forward passes and then pass-
ing gradients backward once. For our approach,
we prune robust networks in the range of 10% and
90% sparsity and report the best one in terms of
robustness in our main experiments. For a fair
comparison, the sparsity of LTH is the same as
that of Robust Tickets. All experimental results
are the average of 5 trials with different seeds.
The hyperparameters of our proposed methods are
listed in the appendix B.3.

4.5 Main Results on Robustness Evaluation
Table 1 shows the results of Robust Tickets and
other baselines under adversarial attack. We can
observe that: 1) original BERT and BERT-tickets
fail to perform well on adversarial robustness
evaluation, and the BERT-tickets even show lower
robustness than BERT, indicating that it is difficult
for the pruned subnetworks to fight against adver-
sarial attacks when only test accuracy is considered.
This result is consistent with the results in (Du
et al., 2021; Xu et al., 2021). 2) The proposed
Robust Ticket achieves a significant improvement
of robustness over the original BERT and other
adversarial defense methods. Robust Tickets use a
better robust structure to resist adversarial attacks,
which is different from the previous methods aimed
at solving robust optimization problems. 3) In
both AGNEWS and IMDB, the randomly pruned
subnetwork loses only about 1 performance point
in test accuracy, but performs poorly in adversarial
robustness. Previous results suggest that all BERT
tickets may be test accuracy winners, but our results
show that only a small percentage of tickets are
winners in terms of adversarial robustness. 4)
Robust Tickets sacrifice accuracy performance in
SST-2 and IMDB. We speculate that this may
be due to the trade-off between accuracy and
robustness (Tsipras et al., 2019).

We also evaluate the performance of our pro-
posed method on more tasks. From Table 2, we can
see that our proposed method yields significant
improvements of robustness over the original
BERT on QNLI, MNLI and QQP datasets. There
is a significant improvement even compared with
FreeLB.



Dataset Method Clean% BERT-Attack TextFooler TextBugger
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

IMDB

Fine-tune 94.1 7.8 91.7 1572.2 12.2 87.0 1209.8 25.8 72.5 783.2

LTH20% 94.0 3.6 96.2 1074.44 7.2 92.3 894.1 16.0 83.0 574.0

FreeLB 94.8 22.6 76.2 1954.7 27.2 71.3 1479.1 36.0 62.0 907.3

InfoBERT 95.2 26.0 72.7 2326.0 32.4 66.0 1572.2 43.6 54.2 969.8

Rand20% 93.1 6.8 92.8 731.5 7.4 92.1 598.7 8.4 91.9 464.3

RobustT20% 93.8 55.2 41.2 3128.0 55.6 40.7 1988.4 57.6 38.6 1149.1

AGNEWS

Fine-tune 94.7 3.8 96.0 436.7 14.9 84.2 333.2 41.5 56.1 178.3

LTH40% 93.7 2.5 97.3 394.4 11.0 88.3 295.2 36.8 60.7 179.7

FreeLB 95.2 10.8 88.6 563.9 24.3 74.4 394.6 51.7 45.5 190.4

InfoBERT 94.4 11.1 88.3 517.0 25.1 73.4 374.7 47.9 49.3 193.1

Rand40% 94.0 1.3 98.6 357.2 6.3 93.2 275.1 27.5 70.1 148.7

RobustT40% 94.9 12.1 87.2 607.7 28.5 70.0 442.1 53.4 43.7 207.8

SST-2

Fine-tune 92.0 2.9 96.8 114.2 5.0 94.6 98.4 29.4 68.3 49.7

LTH60% 92.1 2.2 97.6 98.9 4.1 95.5 90.5 29.1 68.4 49.6

FreeLB 91.6 10.2 88.9 154.6 14.4 84.2 123.8 42.4 53.7 54.9

InfoBERT 92.1 14.4 84.4 162.3 18.3 80.1 121.4 40.3 56.3 51.2

Rand30% 83.2 2.1 97.5 89.4 2.4 97.1 75.6 16.5 80.2 44.2

RobustT30% 90.9 17.9 80.3 164.9 26.7 70.6 149.8 42.1 53.7 53.9

Table 1: Main results on adversarial robustness evaluation. Fine-tuning RobustT for downstream tasks achieves a
significant improvement of robustness. The percentage on the subscript denotes the sparsity of the subnetworks.
The best performance is marked in bold. Suc% lower is better.

Dataset Method Clean% Aua%
TextFooler TextBugger

QNLI

Fine-tune 91.6 4.7 10.5

FreeLB 90.5 12.8 12.0

InfoBERT 91.5 16.4 20.9

RobustT30% 91.5 17.0 25.9

MNLI

Fine-tune 84.4 7.7 4.3

FreeLB 82.9 11.0 8.4

InfoBERT 84.1 10.8 8.4

RobustT30% 84.0 18.4 22.6

QQP

Fine-tune 91.3 24.8 27.8

FreeLB 91.2 27.4 28.1

InfoBERT 91.9 34.4 35.9

RobustT30% 91.5 47.2 46.0

Table 2: Performance of RobustT on QNLI, MNLI
and QQP datasets. Compared with the original BERT,
fine-tuning on Robust Tickets improves the adversarial
robustness on different tasks.

4.6 Ablation Study

To better illustrate the contribution of each com-
ponent of the proposed method, we perform
the ablation study by removing the following
components: mask training (but replacing it with
IMP in traditional LTH), adversarial loss objective
(Adv). We can observe that: 1) Mask training
is important for performance and imp does not
identify robust subnetworks well. 2) Without
adversarial loss objective, the proposed method

Dataset Method Clean% Aua%

IMDB
RobustT20% 93.8 55.6

w/o Mask Training 94.0 15.1

w/o Adv 93.4 5.4

AGNEWS
RobustT40% 94.9 28.5

w/o Mask Training 94.2 16.1

w/o Adv 94.5 8.8

SST-2
RobustT30% 90.9 26.7

w/o Mask Training 92.2 6.2

w/o Adv 91.2 3.5

Table 3: Ablation study on text classification datasets.
Aua% is obtained after using TextFooler attack.

identifies subnetworks that perform well in terms
of clean accuracy, but does not provide any
improvement in terms of robustness.

5 Discussion

5.1 Impact of Sparsity on Robust Tickets

The proposed method can prune out a subnetwork
with arbitrary sparsity based on the confidence
of masks. In Fig.2, we compare the Robust
Tickets and randomly pruned subnetwork across all
sparsities. Robust Tickets have better robustness
even at low sparsity, which confirms that some
structures of BERT are useless for accuracy and
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Figure 2: Fine-tuning evaluation results of the robust winning tickets (blue), the random (orange), and the original
BERT (green) under various sparsity levels. The adversarial robustness improves as the compression ratio grows
until a certain threshold, then the robustness deteriorates. Aua% is obtained after using TextFooler attack.

hurt robustness. When the sparsity increases to a
certain level, the robustness decreases faster than
the accuracy, which indicates that the robustness is
more likely to be affected by the model structure
than the accuracy. Therefore, it is more difficult to
find a Robust Ticket from BERT. The accuracy
of the subnetwork is slowly decreasing with
increasing sparsity, but the robustness shows a
different trend. The change in robustness can be
roughly divided into three phases: The robustness
improves as the sparsity grows until a certain
threshold; beyond this threshold, the robustness
deteriorates but is still better than that of the
random tickets, In the end, when being highly
compressed, the robust network collapses into a
random network. A similar phenomenon is also
be observed (Liang et al., 2021). The robustness
performance curve is not as smooth as the accuracy,
this may be due to the gap between the adversarial
loss objective and the real textual attacks.

5.2 Sparsity Pattern

Fig.3 shows the sparsity patterns of Robust Tickets
on all datasets. We can clearly find that the
pruning rate increases from bottom to top on the
text classification tasks (IMDB, SST2, AGNEWS),
while it is more uniform in the natural language
inference tasks (MNLI and QNLI) and Quora
question pairs (QQP). Recent work shows that
BERT encodes a rich hierarchy of linguistic
information. Taking the advantage of the probing

Dataset Method Clean% Aua%

IMDB

RobustT20% 93.7 55.6

w/o Initialization 87.9 0.2

w/o Structure 93.7 13.4

w/o Structure+Longer 93.6 18.6

AGNEWS

RobustT40% 94.9 28.5

w/o Initialization 92.4 0.4

w/o Structure 94.9 21.8

w/o Structure+Longer 94.8 24.6

SST-2

RobustT30% 90.9 26.7

w/o Initialization 83.1 2.1

w/o Structure 92.0 15.7

w/o Structure+Longer 91.9 25.5

Table 4: Importance of Robust Ticket initialization and
structure. Our results show that the initialization of
Robust Tickets seems to be more important than the
structure, although both of them play a role. Aua% is
obtained after using TextFooler attack.

task, Jawahar et al. (2019) indicates that the surface
information features are encoded at the bottom,
syntactic information features are in the middle
network, and semantic information features in the
top. Therefore, we speculate that the sparsity
pattern of Robust Tickets is task-dependent.

5.3 Speedup Training Process

An important property of winning tickets is to
accelerate the convergence of the training process
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Figure 3: Heatmaps of sparsity patterns found on different tasks, each cell gives the percentage of surviving weights
in self-attention heads and MLPs. The sparsity patterns on IMDB and SST-2 are similar, which may be due to the
fact that they are both text classification datasets based on movie reviews.

(Chen et al., 2021; You et al., 2019). The training
curve in Fig.4 shows that the convergence speed
of Robust Tickets is much faster compared with
the default fine-tuning methods. And both the
convergence of both accuracy and robustness are
accelerated. In addition, the convergence of the
randomly pruned subnetwork is not accelerated,
which points out that sparse structures and smaller
models do not always lead to a faster training.

5.4 The Importance of Robust Ticket
Initialization and Structure

To better understand which factor, initialization or
structure, has a greater impact on the Robust Ticket,
we conduct corresponding analysis studies. We
avoid the effect of initialization by re-initializing
the weights of robust tickets. To avoid the effect of
structures and preserve the effect of initializations,
we use the full BERT and re-initialize the weights
that are not contained in the Robust Tickets. The
results are shown in Table 4.

Importance of initialization LTH suggests that
the winning tickets can not be learned effectively
without its original initialization. For our robust
BERT tickets, their initializations are pre-trained
weights. Table 4 shows the failure of Robust Tick-

ets when the random re-initialization is performed.

Importance of structure Frankle and Carbin
(2019) hypothesize that the structure of winning
tickets encodes an inductive bias customized for
the learning task at hand. Although removing this
inductive bias reduces performance compared to
the robust tickets, it still outperforms the original
BERT, and this performance improves further with
longer training time. It can be seen that the
initializations of some pre-training weights may
lead to a decrease in the robustness of the model.

6 Conclusion

In this paper, we articulate and demonstrate the
Robust Lottery Ticket Hypothesis for PLMs: the
full PLM contains a subnetwork (Robust Ticket)
that can achieve a better robustness performance.
We propose an effective method to solve the ticket
selection problem by encouraging weights that are
not responsible for robustness to become exactly
zero. Experiments on various tasks corroborate
the effectiveness of our method. We also find that
pre-trained weights may be a key factor affecting
the robustness on downstream tasks. The Robust
Tickets are good defenders.
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Figure 4: Clean accuracy and accuracy under attack as training proceeds. The method proposed by us is less
time-consuming during the training process of both two metrics. Aua% is obtained after using TextFooler attack.
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A The Effect of Regularization Strength
during Mask Training

In section 3.2.2, we show the mask training
curves for various regularization strengths λ in
SST-2 dataset. The results on more datasets are
shown in the Fig.5, where we can observe that
the mask training process is insensitive to the
regularization strength, and the convergence of
masks is eventually achieved.

B Implementation Details

B.1 Details for finetuning models

We report in Table 5 the values of hyperparameters
used to fine-tune the models. All the models
were trained on single Nvidia Ge-Force RTX-3090
Graphical Card with 24G graphical memory.

Hypeparameters Values
Optimizer Adamw(Loshchilov and Hutter, 2019)

Learning rate 2× 10−5

Dropout 0.1

Weight decay 1× 10−2

Batch size 16 or 32
Gradient clip (−1, 1)

Epochs 3

Bias-correction True

Table 5: Training hyperparameters for fine-tuning the
models.

B.2 Details for text attack

We use textattack (Morris et al., 2020) to implement
the following attack methods. For most attack
methods, we use the default parameters of third-
party libraries. It should be noted that the
implementation in textattack also takes special
attack parameters, so the attack performance of
each method can not be identical in their original
papers. The parameters for the various attack
methods are defined as follows: neighbour size
N , modify ratio M , sentence similarity S. They
are listed in the Table 6.

Textfooler Textbugger BERT-Attack
N 50 5 50

M − − 0.9

S 0.84 0.8 0.2

Table 6: Setting of attack parameters for attack methods.



Datasets K β λ ϵ m w

SST2 0.03 0.05 0.1 0.05 3 1e− 6

AGNEWS 0.03 0.05 0.1 0.05 3 1e− 6

IMDB 0.03 0.1 0.1 0.05 2 1e− 6

QQP 0.04 0.05 0.1 0.05 3 1e− 6

QNLI 0.04 0.05 0.1 0.05 3 1e− 6

MNLI 0.2 0.1 0.1 0.05 2 1e− 6

Table 7: The combinations of hyperparameters for
finding Robust Tickets.

B.3 Hyperparameters for pruning model
As some adversarial training method, introduces
four widely used hyperparameters: adversarial step
size K, initiate adversarial margin ϵ, number of
adversarial steps m. In addition, we also report two
important hyperparameters in the pruning period.
They are mask learning rate β and regularization
penalty coefficient λ. The weight decay w in the
optimizer are also changed compared with default
settings to make mask sparsity rate converge better.
We list the best combinations of hyperparameters
for each tasks in Table 7.
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Figure 5: Model masks convergence rate on four datasets.


