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ABSTRACT
In recent years, the task of reformulating natural language
queries has received considerable attention from both industry
and academic communities. Because of the lexical chasm problem
between natural language queries and web documents, if we
directly use natural language queries as inputs for retrieval, the
results are usually unsatisfactory. In this work, we formulated
the task as a translation problem to convert natural language
queries into keyword queries. Since the nature language queries
users input are diverse and multi-faceted, general encoder-decoder
models cannot effectively handle low-frequency words and out-of-
vocabulary words. We propose a novel encoder-decoder method
with two decoders: the pointer decoder firstly extracts query terms
directly from the source text via copying mechanism, then the
generator decoder generates query terms using two attention
modules simultaneously considering the source text and extracted
query terms. For evaluation and training, we also proposed a
semi-automatic method to construct a large-scale dataset about
natural language query-keyword query pairs. Experimental results
on this dataset demonstrated that our model could achieve better
performance than the previous state-of-the-art methods.
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1 INTRODUCTION
Most of the traditional web search engines were designed to process
keyword queries. In most cases, they can provide satisfactory
retrieval results when a query is composed of only a few keywords.
However, along with the development of speech recognition and
mobile phones, virtual assistants (e.g. Google Allo or Microsoft
Cortana) are more commonly used. Hence, natural language
queries have become widely used as inputs for retrieval. In
contrast to queries that contain a few keywords, natural language
queries not only contain many common words but also suffer
from the “lexical chasm” problem [25]. Figure 1 illustrates an
example. From this example, we can observe that the input natural
language query contains many common words, such as “where”,
“go” and “play”. However, it does not contain important keywords
like “sightseeing” or “things to do”, which are commonly used
in the relevant documents. As a result, its retrieval results are
unsatisfactory because of the redundant words and lexical chasm
problem. However, we will get the satisfactory result if we use the
corresponding keyword query to retrieval.

Because of an increasing need, this problem has received
considerable attention from both the academic and commercial
communities. Query rewrite, which aims to alleviate the vocabulary
chasm by altering a given original query into an alternative query,
is a major solution for the problem, and various related approaches
have been proposed in recent years [8, 17, 25, 30]. For example, Jones
et al. [17] proposed the generation of a new query to replace the
natural language query and treated query rewriting as a machine
translation problem. Since then, both statistical machine translation
models [8, 25] and neural machine translation models [30] have
been proposed to rewrite natural language queries. However, these
models cannot effectively handle low-frequency keywords and
those keywords that do not exist in the fixed size output vocabulary.
For example, some name entities (e.g. Beijing) only appear in few
natural language queries, and generating these words from a fixed-
size output vocabulary is difficult.

Another challenge of this task is that there is lack of publicly
available datasets about natural language query - keyword query
pairs. This significantly impacts the further development of
academic research. The existing studies [8, 17, 25, 30] all constructed
datasets based on the query logs of commercial search engines
(e.g. Google, Yahoo or Bing), which are difficult for the academic
community to obtain. Although the Text Retrieval Conference
(TREC) conducted an answer retrieval contest in 2017 and released

https://doi.org/10.1145/3269206.3271727


Where should I go and play when I first came to Beijing ?

(a) natural language query

Beijing sightseeing

(b) keyword query

Figure 1: An example of retrieval results of the natural language query “Where should I go and play when I first came to Beijing”
and keyword query “Beijing sightseeing” . If we can translate the natural language query into its corresponding keyword query,
we will get satisfactory retrieval results.

a related dataset [6], there will be a significant gap between this
dataset and users’ true natural language queries. The natural
language queries are often relatively colloquial and unspecialized,
but this dataset was based on large quantities of knowledge articles
from Wikipedia and its original queries are composed of an article
and section title.

To overcome these issues, in this work, we first constructed a
large dataset of natural language queries using the largest Chinese
Community Question Answering (CQA) platform “Baidu Knows”1.
This dataset contains a collection of natural language queries and
their corresponding keyword queries. Because manual annotation
is a time-consuming and expensive task, we proposed a semi-
automatic method to perform the annotation. By analyzing the
data, we find that the corresponding keyword query is composed of
two parts: extractive keywords, which appear in the original natural
language queries, and generative keywords, which do not appear
in the original natural language queries. Hence, our proposed
model contains two decoders: pointer decoder and generator decoder.
The pointer decoder only extracts extractive keywords directly
from the original language query, while the generator decoder can
generate generative keywords from a fixed-size output vocabulary.
By introducing the pointer decoder, our model could extract those
low-frequency words and out-of-output-vocabulary words that
appeared in the original query.

In addition, we deliberately designed the process of keyword
queries generation with a focus on how real human annotators
do it. Given a natural language query, human annotators usually
first extract keywords from the original queries, then they may
summarize some keywords that do not appear in the original queries
relying on an understanding of the original query and extractive
keywords. In our model, the pointer decoder first extracts keywords
from the source text with relatively high accuracy to remedies the
exposure bias issue. Then, the generator decoder summarizes and

1https://zhidao.baidu.com

generates keywords to alleviate lexical chasm using two attention
modules simultaneously considering source text and extracted
keywords. Experimental results on our dataset showed that our
method could achieve better performance in translating natural
language queries to keyword queries, and effectively alleviated both
the redundant words and lexical chasm problem.

The main contributions of this work are summarized as follows:
• We proposed a semi-automatic method to perform the
data annotation and constructed a large-scale dataset about
natural language queries for academic research. This dataset2
will be released with our code together.
• We proposed a novel encoder-decoder method with two
decoder, where the pointer decoder firstly extracts keywords
directly from the source text via copying mechanism, then
the generator decoder generates query terms using two
attention modules simultaneously considering the source
text and extracted keywords.
• Experimental results demonstrated that the proposedmethod
could achieve better performance than the previous state-of-
the-art methods in natural language queries rewrite.

2 RELATEDWORK
There are three major areas related to this task and our proposed
models. The first is the work on the task of query reformulation
in information retrieval. The second is the encoder-decoder model
for the translation problem, and the last is the pointer network and
copying mechanism. We will mainly introduce related studies in
these areas in the following section.

2.1 Query Reformulation in Information
Retrieval

Query reformulation has long been an important research topic in
information retrieval, and there have been a number of approaches
2https://github.com/fudannlp16/cikm_query_keyword



for this topic. Xu and Croft [34] used the top-ranked returned
documents retrieved by the original query to expand the query. This
method is influenced by the initial ranking results and can not utilize
user-generated data. Later approaches focused on using user query
logs to expand a query by means of the clickthrough rate [5, 35],
co-occurrence in search sessions [17], or query similarity based
on click-through graphs [7]. The advantage of these approaches is
that user feedback is readily available in user query logs and can
efficiently be precomputed. However, these approaches all face the
problem of requiring some resource dependent on a specific search
engine. In addition, He et al. [14] proposed a learning to rewrite
framework that focuses on the candidate ranking.

More recently, several studies adopted data from user query logs
as input for the Statistical Machine Translation (SMT) model for
learning query rewriting and query expansion [8, 9, 25, 26]. These
methods treated user queries as one language and the reformulated
queries as another language. The effectiveness of the statistical
translation-based approach to a web search has been demonstrated
empirically in recent studies, in which word-based and phrase-
based translation models were trained on large amounts of click-
through data [1].

Some methods that translate natural language queries into
keyword queries have also been proposed. Huston and Croft [16]
removed some redundant words, and Kumaran and Giridhar [19]
used a predictor model to reduce long queries. Maxwell and
Croft [21] selected the words directly from a query according to the
importance calculated by their models. These methods focused on
extracting keywords directly from the original query, but could not
generate keywords that were not available in the original query.
Song et al. [30] proposed a neural attentional encoder-decoder
model to translate natural language queries into keyword queries,
to generate keywords that were not seen in the original queries.
However, this method could not effectively handle low-frequency
words and out-of-output-vocabulary words

2.2 Encoder-Decoder Model
Some previous works formulated the task of translating natural
language queries into keyword queries as a translation problem. In
this work, we also regarded it as a translation problem and adopted
the encoder-decoder model.

Cho et al. [3] proposed to the use of an RNN encoder-decoder
that consisted of two recurrent neural networks for machine
translation. The model encoded a source sentence into a fixed-
length vector, from which a decoder generated a translation. An
attention mechanism was first introduced into a translation models
by Bahdanau et al [2] and later refined by Luong et al. [20]
and others. The key idea behind the attention mechanism is to
establish direct shortcut connections between the target and the
source by paying attention to relevant source content when we
translate. Encoder-decoder models with an attention mechanism
have already been widely used in several NLP tasks such as
machine translation [2, 20], speech recognition [10], and text
summarization [4, 27].

2.3 Pointer Network
Our idea of introducing a pointer decoder into the attentional
encoder-decoder model was partially inspired by the recent work of
Pointer Networks [32], in which an encoder-decoder model used the
soft attention distribution of Bahdanau et al [2] to predict the output
sequence directly from the input sequence. The pointer network has
been used to create hybrid approaches that mix pointing (copying)
and generation during decoding in various tasks like machine
translation [12], language modeling [22], and summarization [11,
24, 29]. In addition, He et al. [13] recently proposed a method
to generate natural answers for real-world question answering
systems by incorporating copying and retrieving mechanisms into
the encoder-decoder model.

Our model is close to the CopyNet model of Gu et al. [11]. and
the Pointer-Generator Networks model of See et al [29]. However,
we considered using two different decoders to copy and generate
keywords separately, while their models adopted just one decoder
to copy or generate words at each translation step. In our model, the
pointer decoder first extracts keywords from the source text with
relatively high accuracy to remedies the exposure bias issue. Then,
the generator decoder summarizes and generates new keywords to
alleviate lexical chasm using two attention modules simultaneously
considering source text and extracted keywords.

3 METHODOLOGY
In this section, we will describe our proposed novel encoder-
decoder model in details. As illustrated in Figure 2, our encoder-
decoder framework mainly includes three components: 1) a neural
Encoder (e) to encode the natural language query into hidden
state representations; 2) a neural Pointer Decoder (p) to extract
extractive keywords directly from the natural language query; and 3)
a neural Generator Decoder (д) to generate generative keywords
from a fixed-size output vocabulary.

3.1 Problem Definition
Given a dataset that consists of N data samples, the i-th data
sample (x(i), y(i)) contains one natural language query x(i) and its
corresponding keyword query y(i). The natural language query
x(i) is a word sequence, while the keyword query y(i) is a word
set. To apply the encoder-decoder model, the word set y(i) needs
to be converted into a word sequence. In particular, we sorted y(i)

in descending order according to the each word’s TF-IDF score,
and regarded the ordered y(i) as a word sequence. This sorting
process was conducted in the data annotation (section 4.2). As a
consequence, both x(i) and y(i) are sequences of words:

x(i) = x
(i)
1 ,x

(i)
2 , ...,x

(i)
Lx(i)

y(i) = y(i)1 ,y
(i)
2 , ...,y

(i)
Ly(i)

where Lx(i) and Ly(i) represents the length of word sequence of x(i)

and y(i), respectively.
When a natural language query x(i) is given, the goal of our

model is to translate x(i) into its corresponding keyword query y(i).
By analyzing the data, we find that 45%words of y are only related to
the semanticmeaning of x, instead of appearing in the x. Meanwhile,
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Figure 2: Overall architecture of our novel encoder-decoder model. The pointer decoder (p) first extracts words directly from
the source text via copying mechanism. Then, the generator decoder (д) generates words from a fixed-size output vocabulary.
Finally, we combine the outputs of the two decoders as the final result. For simplicity, we omit some links for computing the
attention score α (see sections 3.3 and 3.4 for more details).

other 55% words can be extracted directly from x. Therefore, during
the training phase, we split y(i) into two parts: y(i)

p
and y(i)

д
. Here,

y(i)
p
represents extractive keywords appearing in x(i), which can

be extracted by the pointer decoder (p), while y(i)
д
represents

generative keywords not appearing in x(i), which is generated
by the generator decoder (д). When inferencing, we combine the
outputs of the pointer decoder and generator decoder, and filter
out the duplicates, generating the keyword query.

For the purpose of simplicity, except for a special statement, we
will use (x, yp , yд ) to represent each data sample (x(i), y(i)

д
, y(i)

p
)

in the rest of this section.

3.2 The Neural Encoder
Just as with the general encoder-decoder model, our neural encoder
uses a bidirectional RNN to encode a natural language query into a
hidden states representation. In particular, we use the Long Short-
TermMemory network (LSTM) [15] to replace the vanilla RNN. The
LSTM introduces a gate mechanism and memory cell to avoid the
gradient vanishing problem, which can provide better performance
than the vanilla RNN in most cases.

Formally, let input sentence x = {x1,x2, ...,xn }. The forward
LSTM reads x in a left-to-right order, resulting in a sequence
of hidden states [

−→
h 1,
−→
h 2, ...,

−→
h n]. The backward LSTM reads x

in a reverse order and generates the sequence of hidden states
[
←−
h 1,
←−
h 2, ...,

←−
h n]. The forward and backward hidden states are

concatenated to construct the final encoder hidden states h =
[h1,h2, ...,hn ], where hi = [

−→
hi ,
←−
hi ] contains information about the

whole sentence and significantly focuses on the i-th word xi and
its surrounding words.

In our model, the hidden states h will provide dynamic context
information of the source text both for the pointer decoder and the
generator decoder by means of the attention mechanism.

3.3 The Neural Pointer Decoder
According to our statistics, about 55% keywords in the keyword
query come from original natural language query x. Hence, we first
use a pointer decoder to extract extractive keywords directly from
natural language query via copying mechanism [32].

The pointer decoder is an unidirectional LSTM with hidden
states sp , and unfolds the encoder hidden states to extract word
from source text x at each time step. In our model, the pointer
decoder is initialized with the summarization of the entire source
text [

−→
h n ,
←−
h 1], which is defined as follow:

s
p
0 =W

p
s [
−→
h n ,
←−
h 1] (1)

whereW p
s is a trainable parameter matrix, which learns to map

the concatenation of forward encoder final hidden state
−→
h n and

backward encoder final hidden state
←−
h 1 to the semantic spaces of

the pointer decoder.



In order to make the decoder dynamically focus on the important
parts of the input, an attention mechanism is used. The attention
distribution α

ep
j,i over the encoder hidden state hi at time j is

calculated as in Bahdanau et al. [2]:

α
ep
j,i =

exp(e
ep
j,i )∑N

i′ exp(e
ep
j,i′)

(2)

e
ep
j,i = vTep tanh(W

ep
h hi +W

ep
s s

p
j ) (3)

where vTep ,W
ep
h ,W

ep
s are learnable parameters of the encoder-

pointer decoder attention module, and sp is the hidden states of
the pointer decoder. We can regard the attention distribution as a
probability distribution over thewords in the source text, which tells
the decoder which word should be extracted as the current output.
For each source text x = {x1,x2, ...,xn }, we have a vocabulary
χ that consists of all the words in x. The pointer decoder can
extract a word from χ as the current output by sampling from the
probability distributions for χ . Specifically, we selected the word
of maximum probability as the current output in our experiments.
The probability of any word ypj ∈ χ is defined as follows:

Pc (y
p
j |y<j , x) =

∑
i :xi=y

p
j
α
ep
j,i (4)

In order for the pointer decoder can automatically stop the
decoding process when inferring, we add an extra special token sosp
as the end flag at the end of the source text. The pointer decoder
will stop the decoding process when sosp is selected.

3.4 The Neural Generator Decoder
Although the pointer decoder could extract partial keywords
directly from the source text, there are some generative keywords
that do not appear in the source text. The generation of these
keywords relies on an understanding of the content of the source
text. Hence, we use a generator decoder with attention modules
to generate keywords from a fixed-size output vocabulary. This
vocabulary is composed of the most common query keywords.

The generator decoder is also an unidirectional LSTM, and its
initial states is defined as follows:

s
д
0 =W

д
s [
−→
hn ,
←−
h1] (5)

whereW д
s is a trainable parameter matrix, which learns to map

the concatenation of forward encoder final hidden state
−→
hn and

backward encoder final hidden state
←−
h1 to the semantic spaces of

the generator decoder.
As shown in Figure 2, to enable the decoder could focus on the

important parts in the source text, we use the encoder - generator
decoder attention module to dynamically capture the source-side
context. At each decoding step k , the context vector c

eд
k is a

weighted sum of the encoder hidden states h:

c
eд
k =

N∑
i=1

α
eд
k,ihi (6)

α
eд
k,i =

exp(e
eд
k,i )∑N

i′ exp(e
eд
k,i′)

(7)

e
eд
k,i = vTeд tanh(W

eд
h hi +W

eд
s s

д
k ) (8)

where vTeд ,W
eд
h ,W

eд
s are learnable parameters of the encoder-

generator decoder attention module, and sд is the hidden states
of the generator decoder. Furthermore, the keywords extracted by
the pointer decoder may also contribute to the generation process,
so we use another pointer decoder - generator decoder attention
module to dynamically capture the target-side context of the pointer
decoder. The context vector cpд is calculated as follows:

c
pд
k =

N p∑
j=1

α
pд
k, js

p
j (9)

α
pд
k, j =

exp(e
pд
k, j )∑N p

j′ exp(e
pд
k, j′)

(10)

e
pд
k, j = vTpд tanh(W

pд
h s

p
j +W

pд
s s

д
k ) (11)

where vTpд ,W
pд
h ,W

pд
s are learnable parameters of the pointer

decoder-generator decoder attention module; and sp and sд are
the hidden states of the pointer decoder and generator decoder,
respectively. It is worth noting that we directly use the hidden state
sequence rather than the word sequence generated by the pointer
decoder as Zhang et al [36]. In this manner, our model could better
avoid negative effect of translation prediction errors.

Then, the encoder context vector ceд , pointer decoder context
vector cpд , and current hidden state sдk are concatenated, and fed
through a single feed-forward layer and a softmax layer to produce
the probability distribution over the fixed-size output vocabulary :

Pд(y
д
k |y<k , x) = so f tmax(Wo [s

д
k , c

eд
k , c

pд
k ] + bo ) (12)

whereWo ,bo are trainable parameters of single feed-forward layer.

3.5 Training and Inference
The most widely used method to train the encoder-decoder model
is called the "teacher forcing" algorithm [33], which minimizes the
sum of cross entropy loss of the ground-truth outputs. Given a
training corpus D = {(x, yp , yд)}, the objective function is defined
as follow:

L(D) =
−1
|D |

∑
x,y∈D

{λ · loдP(yp |x) + (1 − λ) · loдP(yд |x)} (13)

where λ ∈ [0, 1] is a hyper-parameter accounting for the preference
in magnitude between the two loss term. The loss term loдP(yp |x)
models the translation procedure of the pointer decoder, while
loдP(yд |x) models the translation procedure of the generator
decoder. These sub-objective functions are defined as follows:

loдP(yp |x) =
N p∑
j=1

loдPc (y
p
j |y<j , x)

loдP(yд |x) =
N д∑
k=1

loдPд(y
д
k |y<k , x) (14)

During inferring, we adopt a three-phase scheme to get the
keyword query. First, we use the pointer decoder to sequentially
extract a word from the source text as the keyword until the special
token sosp is selected. Then, the generator decoder generates a
keyword from the fixed-size vocabulary until the special token sosд



Figure 3: The semi-automatic process of data annotation. We first used the best answer to search relevant documents for each
question. Then, all subsets of top 5 words of TF-IDF score in the relevant documents would be set as the candidate keyword
query set. Next, we made an automatic evaluation for each candidate keyword query and calculated its score. Finally, we
manually selected the best keyword query from the candidate set.

is selected. Finally, we combine the outputs of the pointer decoder
and generator decoder and filter out the duplicates, generating the
final keyword query.

4 DATA CONSTRUCTION
In this section, we will introduce the semi-automatic data construc-
tion process in details. Our constructed dataset is composed of a
collection of triples (natural language query (question), best answer,
keyword query). The natural language query corresponds to the
question of "Baidu Knows". The best answer is the best one selected
by the questioner from all answers, or it is the answer with the most
votes. The keyword query is constructed by extracting some words
from the relevant documents. In particular, the relevant documents
are the documents that are similar to the best answer or contain
the best answer. The key point of the dataset construction is how
to define relevant documents and generate query keywords, and
we will describe them in detail below.

Specially, there are two reasons that we selected "Baidu Knows"
to construct the dataset. On the one hand, questions from the CQA
website are pretty close to users’ true natural language queries, and
they are relatively easy to obtain. On the other hand, it is difficult
for an academic community to obtain query logs from a commercial
search engine. Hence, we can not follow the practice of constructing
a dataset using query logs as [8, 17, 25, 30] .

4.1 Data Collection
We first randomly crawled about 1 million questions and each
question’s corresponding answers from "Baidu Knows". Because
there could be errors or irrelevant answers for each question, we
only reserved the best answer for each question to reduce noisy
data. Meanwhile, we deleted those questions that were repeated

or had no best answer. After this operation, approximately 300
thousand question-best answer pairs remained.

In order to obtain reasonable and high-quality question - best
answer pairs, we further imposed the following restrictions: a) the
question had no less than 15 characters, b) the best answer had no
less than 300 characters, and c) the votes for the best answer were
no less than 10. Approximately 85K question-best answer pairs
satisfied these restrictions, and we selected them as the question-
best answer pairs for data annotation.

4.2 Data Annotation
Figure 3 illustrates the semi-automatic process for data annotation.
Given a question-best answer pair, the purpose of data annota-
tion was generating its corresponding keyword query. We first
submitted the best answer to each question into the Baidu search
engine and calculated the relevance between best answer and each
retrieved document of first three pages. Here, we used Edit Distance
Ratio (EDR) [28] to represent the relevance. Concretely, the EDR is
defined as:

EDR (a,b) = 1 −
ED (a,b)
|a| + |b|

(15)

where |a| and |b| are respectively the length of string a and b. The
ED represents Edit Distance: the minimum number of operations
required to transform one string into another string. The EDR
ranges from 0 to 1. In particular, we randomly selected 100
best answer and their retrieved documents, and make a manual
evaluation on whether the retrieved documents were similar to the
best answer or not. According to evaluation results, we found that
two documents were similar in 91% case if their EDR is no less than
0.6. Hence, we selected those retrieval documents whose relevance
was no less than 0.6 as relevant documents.



Table 1: Statistical information of the data construction

Description Value
Original file size of crawled data 1.68 GB
Original crawled questions 98.6K
Question-best answer pair 85362
Manual selection question 21483
Question-keyword query pair 11296
Average number of relevant documents 8.3
Average keywords number of keyword query 3.05

After obtaining the relevant documents, we used TF-IDF to score
each word in the relevant documents and selected the top 5 words.
Then, all possible non empty subsets of the top 5 words were used
to construct the candidate keyword query set, which had a size
of 31. Next, we made an automatic evaluation for each candidate
keyword query using the "Baidu" search engine. Concretely, we
used the "Baidu" to retrieve each candidate keyword query, and use
the number of relevant documents in the top 10 retrieved documents
as the candidate keyword query score. Notably, we filtered out
those questions whose candidate keyword queries scores were all
small than 2. About 21K questions remained.

Then, we invited 5 people to make a manual selection, in
which the best keyword query would be selected from the top
5 score candidate keyword query according to the score and
the original question. Meanwhile, we filtered out unreasonable
question-keyword query pairs. The process takes about 210 hours
in total. Finally, about 11 K questions with their corresponding
keyword queries and best answers, remained, and we used them to
train and evaluate our model.

Table 1 gives the related data statistics information in the data
collection and data annotation process.

5 EXPERIMENT
5.1 Dataset and Setup
To train and evaluate the proposed method, we split our constructed
dataset into a training set and a testing set with a ratio of 8:2, and
randomly selected 10% of the training set as the development set.
Because the dataset we constructed was derived from a Chinese
CQA site, we first used jieba 3 to conduct word segmentation
(divide the sentences into words) for the dataset. In addition, we
used the largest Chinese search engine "Baidu" as the test search
engine, because it has better retrieval performance than other
search engines (e.g. Google or Bing) for Chinese queries.

In the experiments, the word embeddings were pre-trained on
the Chinese Wikipedia corpus using the word2vec [23] toolkit
and fine-tuned in the training process. The dimension of the word
embeddings was 60. We used a single layer’s bidirectional LSTM as
the encoder, and another two single layer’s LSTM as the pointer
decoder and generator decoder, respectively. The dimensions of the
LSTMs both for the encoder and decoders were all set to 128. The
word vocabulary sizes for the natural language queries and keyword
queries respectively were 20130 and 9613, respectively. In particular,

3Jieba is a popular open source project for Chinese word segmentation, which is
available at https://github.com/fxsjy/jieba.

the encoder and decoders shared the same word embeddings.
During training, the models were optimized using Adam [18]
optimization algorithm with a batch size of 64, an initial learning
rate of 0.001, a λ of 0.5, and a gradient clipping of 5. Dropout [31]
regularization has proved to be an effective method for reducing the
overfitting in neural networks with millions of parameters. In this
work, we also used it to improve the regularization of the hidden
layer, and the dropout rate was set to 0.4. This training process
was stopped when the loss of the development dataset stopped
dropping for several epochs. These configurations were also used
in the other models described in the following paragraphs.

It should be noted that, according to our statistics, only 55% of the
keywords in the keyword queries appeared in the original natural
language queries, while the other 45% keywords did not appear in
the natural language queries. In general, the generation of these
45% keywords was more difficult, which required an understanding
of the meaning of natural language queries.

5.2 Evaluation
First, we used the precision (P), recall (R), and F1-score (F1)
to evaluate the performance when translating natural language
queries into keyword queries. The precisionwas calculated based on
the proportion of keywords truly predicted among all the keywords
predicted by the model. The recall was calculated based on the
proportion of truly predicted among the golden standard keywords.

Furthermore, we also used two common metrics (Hits@K and
Precision@K) to evaluate the retrieval performance for original
language queries, as well as translated keyword queries using
different methods. In particular, because original natural language
queries all come from "Baidu Knows", for all methods, we filtered
out all retrieved documents that from "Baidu Knows" in order to
make a fair comparison.

(1) Hits@K: Hits at top-K retrieved documents:

Hits@K =
1
|Q |

∑
q∈Q

hK(q) (16)

where Q is the queries set and |Q | is the size of the queries set.
hK(q) represents whether top-K retrieved documents contains any
relevant document of q:

hK(q) =

{
1 if any relevant document of q is contained
0 otherwise

Specifically, those retrieved documents whose relevance (see Eq.
15) with the best answer was no less than 0.6 would be regarded as
the relevant documents in our work.

(2) Precision@K : Precision of the top-K retrieved documents:

P@K =
|DK ∩ D

∗ |

|DK |
(17)

where DK are top-K retrieved documents, and D∗ are the rele-
vant documents. Here, D∗ are those retrieved documents whose
relevance (see Eq. 15) with the best answer was no less than 0.6.
P@K represents the proportion of relevant documents among the
retrieved documents.

https://github.com/fxsjy/jieba


Table 2: Performance of the different methods on the testing set.

# Method Retrieval performance Translation performance
Hits@5 Hits@10 P@3 P@5 P@10 Precision Recall F1-Score

1 Raw Query 0.259 0.293 0.118 0.083 0.068 0.112 0.552 0.186
2 Vanilla Seq2seq: 0.191 0.217 0.079 0.057 0.047 0.250 0.222 0.235
3 Attentional Seq2seq 0.222 0.251 0.096 0.069 0.057 0.313 0.261 0.284
4 Sequence Labeling 0.314 0.355 0.146 0.109 0.093 0.589 0.387 0.467
5 Pointer Network 0.283 0.312 0.141 0.106 0.085 0.596 0.339 0.439
6 ATS2S + SL 0.298 0.342 0.132 0.100 0.082 0.387 0.521 0.444
7 ATS2S + PN 0.287 0.320 0.133 0.099 0.080 0.384 0.509 0.438
8 Joint ATS2S + SL 0.292 0.329 0.140 0.107 0.084 0.440 0.465 0.452
9 Our model 0.387 0.441 0.164 0.124 0.100 0.535 0.494 0.514

5.3 Methods for Comparison
For comparison with the proposed method, we evaluated the
following methods on the constructed corpus:

• Raw Query: The original natural language query was
directly given to the search engine without any modification,
which could be regarded as a baseline level for retrieval
performance.
• Vanilla Seq2seq: This was the general encoder-decoder
model [3] without the attention mechanism. The encoder
was a single layer’s bidirectional LSTM, and the decoder was
a single layer’s unidirectional LSTM.
• Attentional Seq2seq: This was the general encoder-
decoder model with the attention mechanism [20], which is
already widely used in several NLP tasks.
• Sequence Labeling: This method is an extractive method,
and it can only extract words from the original queries as
the keywords of keyword queries. Concretely, we regarded
the keywords extraction as a word-based sequence labeling
task and adopted the Bi-LSTM model.
• Pointer Network: This method [32] is also an extractive
method and it can be regarded as a variant of our proposed
model without the generator decoder module.
• ATS2S + SL: This method directly combined the results of
the attentional seq2seq and sequence labeling models. Then,
it filtered out duplicated words to construct the keyword
queries.
• ATS2S + PN: This method directly combined the results of
the attentional seq2seq and pointer network models. Then
it filtered out duplicated words to construct the keyword
queries.
• Joint ATS2S + SL: The attentional seq2seq model and
sequence labeling model share the same Bi-LSTM encoder.
The sequence labeling model used the Bi-LSTM encoder to
extract keywords. Meanwhile, the attentional seq2seq model
generated keywords by its decoder. The two models were
trained jointly together.

5.4 Results and Discussion
Table 2 lists the performances of the different methods on our
constructed dataset. We regarded the raw query as a baseline level,
which could give us an indication of whether these methods were
effective for translating natural language queries. Its precision was
approximately 0.112, which reflected the proportion of redundant
words in the original queries. The recall was approximately 0.552,
which reflected the proportion of keywords that came from the
original queries. From the table, we can observe that our proposed
model is significantly better than the other methods because it
obtains the best results on these important metrics.

Vanilla Seq2seq and Attentional Seq2seq are both generative
methods, which generate keywords directly from a fix-sized output
vocabulary. In particular, Song et al. [30] proposed using the
Attentional Seq2seq model to translate natural language queries
into keyword queries. However, observing the results of their
model, we see that the generative method is not effective in
our task. We supposed that this was because there were more
low frequency keywords and out-of-output-vocabulary keywords
such as named entities in our constructed dataset. However, the
Attentional Seq2seq model could not effectively handle these
keywords. Sequence Labeling and Pointer Network were both
extractive methods, which extracted words directly from the natural
language queries to construct the keyword queries. However, these
extractive models could not generate keywords that did not appear
in the original queries. Because of the lexical chasm problem,
about half of the keywords did not appear in the original queries.
Therefore, these extractive methods could not fit the task well.
It is notable that the extractive methods performed better than
the generative methods for the task, which also indicated the
difficulty of generating generative keywords directly from the
output vocabulary.

Considering the results of ATS2S+SL and ATS2S+PN, we can
observe that directly combining the results of generative methods
and extractive methods did not produce better performance, and it
was even poorer than the single extractive methods. We supposed
that this direct combination might have generated more redundant
words, which hurt the performance. The relatively higher recall
and low precision could prove this supposition. In addition, we



Figure 4: F1-score on the development set using different λ

Table 3: The recall performance of different methods on
the extractive keywords, generative keywords and total
keywords.

# Method Extractive Generative Total
Keywords Keywords Keywords

Attentional Seq2seq 0.226 0.326 0.261
Sequence Labeling 0.656 0.000 0.387
Our Model 0.630 0.301 0.494

also attempted to jointly train the Attentional Seq2seq model
and Sequence Labeling model in the Joint ATS2S + SL method.
However, this did not work well. We suppose that this was because
the encoder had difficulty simultaneously bear the source text
information and extracting keyword information.

It should be noted that our model is equivalent to the Attentional
Seq2seq model when the pointer decoder module is removed.
Meanwhile, our model will transform into the pointer network
model when the generator decoder module is removed. Our
proposed model combines the Attentional Seq2seq and Pointer
Network Models. From the results listed in Table 2, we can observe
that our approach achieves a relative improvement of 17.1% for F1-
score, 41.8% for Hits@10, 16.3% for P@3, and 17.0% for P@5 over
the Pointer Network model. Meanwhile, our method also provides
improvements of 81.0% for F1-score, 75.7% for Hits@10, 70.8% for
P@3, and 79.7% for P@5 over the Attentional Seq2seq model.

5.5 Analysis
As stated, one important highlight of our work is that our
model can not only extract extractive keywords that appear in
the original natural language queries, but also generate those
generative keywords that do not appear in the original natural
language queries. Table 3 lists the recall performances of different
methods on the extractive keywords, generative keywords and
total keywords, based on a comparison of our proposed model with
the Sequence Labeling model (extractive method) and Attentional
Seq2seq model (generative method). From the result, we can see
that the Attentional Seq2seq model was a little better at generating

Figure 5: F1-score of the natural language queries at
different lengths.

generative keywords, but it could not handle extractive keywords
well. Meanwhile, the Sequence Labeling model could better extract
extractive keywords, but it could not identify generative keywords.
However, both the extractive keywords and generative keywords
are important for retrieval. Our model could simultaneously handle
extractive keywords and generative keywords well and achieved
much better recall performances for total keywords than the
other methods. Therefore, our model had the best performance
in processing natural language queries.

Then, we investigated the impact of the hyper-parameter λ (see
Eq. 13) on the development set. For this purpose, we gradually
varied λ from 0.3 to 0.7 with an increment of 0.1 in each step.
To simplify the experiments, we only adopted the F1-score as the
evaluation criterion. As shown in Figure 4, we found that our model
achieved the best performance when λ = 0.5. We believed that this
was because the pointer decoder and generator decoder were equal
in importance during the training process. Therefore, we set λ =
0.5 in the experiment.

We also investigated the performances of different methods
at different lengths of the natural language queries. To simplify
the experiments, we only adopted the F1-score as the evaluation
criterion. We divided our testing sets into different groups and
then compared the performances for each group. In particular,
the maximum character length of the queries was 79, while
the minimum character length of the queries was 15. Figure 5
illustrates the F1-score on these groups of testing sets. We observed
that our model achieved the best performance in all the groups,
although the performances of most systems slightly dropped with
an increase in the length of the source sentences. These results
clearly demonstrated once again the effectiveness of our model. In
particular, we found that the Attentional Seq2seq model showed a
converse trend, with a better performance when processing long
queries than short queries. We think this is because that long
sentence is more likely to be understood by the Attentional Seq2seq
model.



6 CONCLUSION
In this work, we studied the problem of translating natural language
queries into keyword queries, in order to alleviate the lexical chasm
between the natural language queries and relevant documents.The
task was regarded as a translation problem, in which the original
natural language queries language were treated as one language,
and the corresponding reformulated queries were treated as another
language. We proposed a novel encoder-decoder model with two
different decoders, respectively. This model could not only extract
important keywords directly from the original natural language
queries, but could also generate indispensable retrieval keywords
that did not appear in the original queries. Because there is lack
of large-scale publicly available dataset of true natural language
queries, we also constructed a large-scale natural language query
dataset. Comparing to the state-of-the-art deep neural networks,
our approach achieves a better performance in processing natural
language queries.
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