
Hashtag Recommendation Using End-To-End Memory Networks with
Hierarchical Attention

Haoran Huang, Qi Zhang, Yeyun Gong, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing,

School of Computer Science, Fudan University
{huanghr15, qz, yygong12, xjhuang}@fudan.edu.cn

Abstract

On microblogging services, people usually use hashtags to mark microblogs, which have a
specific theme or content, making them easier for users to find. Hence, how to automatically
recommend hashtags for microblogs has received much attention in recent years. Previous
deep neural network-based hashtag recommendation approaches converted the task into a multi-
class classification problem. However, most of these methods only took the microblog itself
into consideration. Motivated by the intuition that the history of users should impact the
recommendation procedure, in this work, we extend end-to-end memory networks to perform this
task. We incorporate the histories of users into the external memory and introduce a hierarchical
attention mechanism to select more appropriate histories. To train and evaluate the proposed
method, we also construct a dataset based on microblogs collected from Twitter. Experimental
results demonstrate that the proposed methods can significantly outperform state-of-the-art
methods. By incorporating the hierarchical attention mechanism, the relative improvement in
the proposed method over the state-of-the-art method is around 67.9% in the F1-score.

1 Introduction

Along with the rapid development of social media, many people write brief text updates about their life
on the go. Among these thousands of millions of microblogs posted every day, some contain # in front of
words or unspaced phrases. The # symbol, called a hashtag, is usually used to mark keywords or topics
in a microblog. Social media users originally created it to categorize messages. Now, hashtags have been
widely used in a variety of circumstances. Hashtagged words that become very popular are often trending
topics. Various works have also shown that hashtags can provide valuable information about different
problems such as twitter spammer detection (Benevenuto et al., 2010), popularity prediction (Tsur and
Rappoport, 2012), and sentiment analysis (Wang et al., 2011).

With the increasing requirements, the hashtag recommendation task has received considerable
attention in recent years. Discriminative models have been proposed from different aspects using various
kinds of features and models (Heymann et al., 2008; Liu et al., 2011), collaborative filtering (Kywe et al.,
2012), generative models (Ding et al., 2013; Godin et al., 2013; She and Chen, 2014), and convolutional
neural networks (CNN) (Gong and Zhang, 2016). Some of the previous works treated this task as a multi-
class classification problem and used word-level features and exquisitely designed patterns to perform
the task. Numerous existing studies utilized the word trigger assumption (Liu et al., 2011; Ding et al.,
2013) and introduced topical machine translation models to achieve the task.

Due to the advantages of deep neural networks and the effectiveness of these methods in various NLP
tasks, convolutional neural networks have also been applied to the hashtag recommendation task (Gong
and Zhang, 2016). Some have also treated the hashtag recommendation task as a multi-class classification
problem and incorporated an attention mechanism to handle the trigger words. This method only used
a microblog as input. It did not take the history information of the user into account. However,
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the microblogs a user posted in recent history can represent their interests to some degree. Previous
works (Zhang et al., 2014) also studied this issue using generative models, and the experimental results
demonstrated the usefulness of the histories of users.

In this work, to incorporate the histories of users, we propose a novel end-to-end memory network
architecture to combine the microblog textual information and corresponding user history to perform the
task. We regard the user history as an external memory for the microblog. The memory networks can help
to extract the useful features from the external memory, which are relevant to the microblog and hashtag,
to construct user interest representations. With the underlying intuition that not all microblogs in the
user history are equally relevant for recommending hashtags, and not all of the words in a microblog are
equally important, we introduce a novel hierarchical attention mechanism and integrate it with a memory
network to capture two insights about the posting histories of users. Experimental results demonstrate
that the performance of the method incorporating the hierarchical attention mechanism is also better than
the method without it.

The main contributions of this work can be summarized as follows:

• To incorporate the user history information, we propose to extend the end-to-end memory networks
to perform the hashtag recommendation task.

• Since not all of the microblogs and words in a microblog are equivalent in importance, we introduce
a novel hierarchical attention mechanism and integrate it with the end-to-end memory networks.

• Experimental results using a dataset collected from a real microblogging service demonstrated that
the proposed method can achieve significantly better performance than the state-of-the-art methods.

2 Related Work

2.1 Hashtag Recommendation

In recent years, various studies have been conducted on this task(Kywe et al., 2012; Ding et al., 2013;
Godin et al., 2013; Sedhai and Sun, 2014; Wang et al., 2014; Gong and Zhang, 2016; Shi et al., 2016).

Kywe et al.(2012) used a similarity based method to solve this problem. They recommends hashtag
by combining hashtags from the similar tweets as well as hashtags from the similar users. Many other
approaches focus on the topic modelling(Ding et al., 2013; Godin et al., 2013; She and Chen, 2014).
Based on the assumption that the hashtag and the trigger words of the tweets are two different language
and have the same meaning, Ding et al.(2013) proposed to use translation process to model this task.
In contrast to the methods that focuses on topic modelling, Shi et al.(2016) proposed a learning-to-rank
approach for modelling hashtag relevance. Due to advantages of deep neural netowrks, CNN has been
applied on this task(Gong and Zhang, 2016). Most of the works are based on textual information of
tweets. However, some other works found there were different types of information which are helpful.
Zhang et al.(2014) proposed a topical model based method to incorporate the temporal and personal
information. Sedhai and Sun(2014) combined the textual information and hyperlinked information to
recommend hashtags.

In this work, we propose a novel networks architecture to combine the textual information and the
corresponding user history to perform the task.

2.2 Attention and Memory

The second relevant line of work is the research on attention mechanisms and memory networks.
Attention mechanisms have been widely used in many studies and have shown to achieve promising
result on several tasks, such as generating handwriting (Graves, 2013), machine translation (Bahdanau et
al., 2014), speech recognition (Chorowski et al., 2014), action recognition (Sharma et al., 2015), caption
generation (Xu et al., 2015) and so on. In recent months, memory networks(Weston et al., 2014) have
been proposed and applied on natural language question answering, which have four component: input
(I), generalization (G), output (O) and response (R) component. After then, Sukhbaatar et al.(2015)
proposed a end-to-end memory networks and applied it on question answering and language modeling.
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Figure 1: End-To-End Memory Networks with Hierarchical Attention

The memory networks architecture has been adopted in dialog systems(Dodge et al., 2015; Bordes and
Weston, 2016; Weston, 2016) and query answering(Kumar et al., 2015; Weston et al., 2015).

In this work, we treat user history as the external memory and use a memory networks architecture
with hierarchical attention to encode the user interest.

3 Approach

3.1 Preliminary
Given a tweet tp, our task is to recommend a hashtag that is most relevant to the tweet. Based on this
definition, we formulate the hashtag recommendation task as a multi-class classification problem. From
the above description, we can see that the user information is also very important because each user
always focuses on several aspects that may relate to the hashtag. Meanwhile, the interests of users can
in most cases be represented by the tweets that they post. Hence, we use the tweet set D to represent
the interests of users. Each tweet is a word sequence denoted by t = {w1, w2, ..., wN}, where N is the
length of the tweet. The user history contains many tweets denoted by D = {t1, t2, ..., tM}, where M is
the size of the history document. Let Hp = {Hp1, Hp2, ...,Hp|Hp|} be the set of candidate hashtags.

3.2 The Proposed Methods
To solve this classification problem, we propose a novel end-to-end memory network architecture
(HMemN2N) to combine the tweet textual information and corresponding user history, which is shown
in Figure 1.

In our proposed models, we first use a tweet encoder to embed the tweet tp. Then, the user interest
encoder can extract the interest information of the user from the user history D with the help of tp.
Finally, we combine the information from two encoders and use a softmax layer to score and recommend
a hashtag list. In this work, we regard the user history as an external memory for the tweet tp. The
introduction of the memory networks can help to extract the useful features from the external memory to
build the user interest representations. With a underlying intuition that not all tweets in the user history
are equally relevant for recommending the hashtag, not all words in each tweet are equally important,



and the tweets in the history document are relatively independent and focus on different aspects, we
introduce a hierarchical attention mechanism into memory networks to capture two insights about the
user history document and obtain a high-quality user interest representation.

We describe the details of different parts of Figure 1 in the following sections.

3.2.1 Tweet Encoder
As shown, the first part of the original input is the tweet tp, and it is treated as a bag-of-words (BoW)
representation. Then, we embed each word w in tp in a continuous space and sum the embedding vectors
to obtain an embedding representation. Specifically, the embedding matrix A(of size dim × |V |, where
V is the vocabulary and dim is the embedding dimension) is used to look up the vectors for words w,
and the representation can be calculated as follows: o0 =

∑N
i Awi. The embedding o0 is also treated as

an initial input of the user interest encoder.

3.2.2 User Interest Encoder
The second part of the input is the user history, which is stored in the memory. We use a memory with a
two-tier architecture: sentence and word. Based on the previously provided notations, the document is a
tweet set: D = {t1, t2, ..., tM}, which is a sentence-level structure. Then, each tweet ti ∈ D is divided
into a bag-of-words representation: ti = {wi1, wi2, ..., wiN}.

To obtain the user interest representation, we propose a two-level encoder architecture, which can then
be stacked in what is called multiple hops, denoted as h = 0, 1, 2, ...,H .

Now, we first introduce a word-level attention mechanism for embedding the tweets ti. There are two
components: input memory and output memory. In the input memory component, given an input set
{t1, t2, ..., ti}, each word wij ∈ ti is embedded using a matrix B of size dim× |V | into memory vectors
{mij} of dimension d, giving mij = Bwij . The input memory representation mi of tweet ti is a matrix
of size N × dim, where N is the length of the tweet. However, because not all words contribute equally
to the tweets meaning, and the importance degree of the word wij should be considered in our models,
we propose a probability layer to achieve the goal. The match between oh and memory vectors mij is
then computed by taking the inner product followed by a softmax:

pij =
exp(oThmij)∑N
n exp(oThmin)

, (1)

where oh is the internal input state in hop h, and pij is a probability vector over the input memory.
In the output memory component, each word wij ∈ ti has a corresponding output vector cij , which is

obtained using an embedding matrix C with the same size. Then, the output representation si of tweet
ti is constructed by summing the output vector cij , weighted by the probability pij , and the equation of
this operation is as follows:

si =
N∑
j

pijcij , (2)

From the above procedure, the memory is converted into a matrix s that contains M tweet embedding
vectors of size dim. Next, we propose a sentence-level method to extract sentences that are important
to the user and aggregate the representation of this information to form the user interest representation.
The weight psi of sentence si is calculated, and the user interest vector u is formed by the weighted sum
of the tweet embeddings:

msi = tanh(Wooh +Wssi), (3)

psi =
exp(WT

msmsi)∑|M |
j exp(WT

msmsj )
, (4)

u =

|M |∑
i

psisi, (5)



where |M | is the number of tweets in the users history document, and the parameters in these equations
are Wo, Ws, and Wms.

By implementing the hops operator, the memory can be read and write iteratively using the state oh.
At the last step of each hops h, a new output state oh+1 is updated with oh+1 = oh + u, where u is
the user interest embedding obtained in this hop. The last output state oH is regarded as a high-level
representation of user insterest.

3.2.3 Final Prediction
Finally, the tweet embedding o0 and the user interest output oH can also be concatenated into the final
vector f , giving f = o0||oH . Then, we can use the final vector to predict the recommended hashtag
through a softmax layer:

p(y = hpi|f ; θs) =
exp(θ

hpiT
s (Wff + bf ))∑|Hp|

j exp(θ
hpjT
s (Wff + bf ))

, (6)

where Wf , bf and θs are parameters, Hp is the candidate hashtag set and hpi is the i-th hashtag in Hp.
According to the scores from the last softmax layer, we can list a top-ranked recommended hashtags

for each tweet.

3.3 Training
The training objective function in this work is:

J =
∑

(tp,D,hp)∈S

−logp(hp|tp;D), (7)

where hp is the hashtag for tweet tp and S is the training set.
The parameter list of our model is:

θ = {A,B,C,Wo,Ws,Wms,Wf , bf , θs}, (8)

where A, B and C are three embedding matrix. Wo, Ws and Wms are the parameters of attention layer
in user interest encoder. Wf , bf and θs are the parameters of the final predict layer.

In this study, we use stochastic gradient descent (SGD) with the adagrad update rule to optimise our
model. Dropout regularization has proved to be an effective method for reducing the overfitting in deep
neural networks with millions of parameters. In this work, we use it and add l2-norm regularization
terms for the parameters of the network to augment the cost function.

Table 1: Statistics of the evalution dataset
#Tweets #Users #Hashtags #Avg.Hashtag/Tweet
288,545 36,003 3,883 1.28

4 Experiment

In this section, we first introduce the data collection. Then, we describe the experiment configurations
and baseline methods. Finally, the evaluation results and analyses are given.

4.1 Dataset and Setup
We started by using Twitter’s API to collect public tweets from randomly selected users. In a first step,
we randomly selected 40,000 users and crawled their tweets. In this step, we obtained 77,995,265 tweets.
In the second step, we selected users with more than 50 tweets and filtered out the tweets whose language
was not English. Then, we filtered out the hashtags whose frequencies were very low. Third, we extracted
the tweets in the original corpus that contained hashtags.



Based on the statistics, there were 281,345 tweets in our evaluation collection, which belonged to
36,003 different users. The unique number of hashtags in the corpus was 3,883, and the average number
of hashtags in each tweet was 1.28. The list of hashtags annotated by their users were treated as the
ground truth. The detailed statistics are listed in Table 1. All of the tweets were processed by removing
stopwords and special characters. In our experiment, we split the dataset into a training set, validation
set, and test set. There were 232,378 tweets in the training set and 28,092 in the validation set. The
remaining 20,875 tweets were in the test set.

In this work, the poster of each tweet had a history. For the user history, we assumed that the latest
tweets posted could represent the user’s current interests and could be stored in the memory. In this work,
the memory capacity was restricted to the most recent 5 tweets posted by the users, the maximum length
of the tweets was 52, any tokens out of this range were discarded and any hashtags occuring in the history
had been removed. The embedding dimension of our model was set to 300, and the number of hops was
set to 2 unless noted otherwise. This configuration was also used in the other methods described in the
following paragraphs. The network was used for training for 60 epochs with early stopping. The learning
rate was set to l = 0.01, and the dropout rate was 0.2.

The three metrics used in this experiment to evaluate the quality of our model were the precision,
recall, and F1-score (denoted as P , R, and F1, respectively). The number of recommended hashtags for
each tweet are denoted as k, where k = {1, 2, 3, 4, 5} and the precision, Recall, and F1-score at the k
result are denoted as P@k, R@k, and F1@k, respectively.

4.2 Baseline

In this section, to compare with our model, we select some effective methods as a baseline and introduce
a degeneration model, described as follows:

• NB: To achieve the task, we convert the hashtag recommendation problem into a classification
problem. We apply Naive Bayes to model the posterior probability of each hashtag using only the
textual information of the tweets.

• NB+H: To assess the usefulness of the user interest information, the textual information and user
history are given to Naive Bayes to recommend hashtags.

• SVM: We use the pre-trained word vector 1, which was trained using a portion of a Google News
dataset containing 300-dimensional vectors for 3 million words using the continuous bag-of-words
model, and sum them as the feature vector of the tweet as features, which are used to implement the
support vector machine for the recommendation.

• SVM+H: The information of the user interest history is added to the features and the support vector
machine is used to achieve the task.

• TTM: TTM was proposed by (Ding et al., 2013) for hashtag recommendation. The authors
proposed a topical translation model to recommend hashtags, which only used the tweet content.

• CNN-Attention: CNN-Attention was proposed by (Gong and Zhang, 2016). It was a convolutional
neural network architecture with an attention mechanism, and it was the state-of- the-art method for
this task. In this paper, we compare our method with it.

• MemN2N: The user interest encoder in our model is a memory network architecture with a
hierarchical attention mechanism. Now, we replace it with the end-to-end memory network method
proposed by (Sukhbaatar et al., 2015) and compare it with our proposed model.

1https://code.google.com/archive/p/word2vec/



Table 2: Result of different methods on the evaluation collection
Method Precision Recall F1
NB 0.123 0.098 0.109
NB+H 0.198 0.156 0.175
SVM 0.232 0.181 0.203
SVM+H 0.312 0.241 0.272
TTM 0.234 0.190 0.210
CNN-Attention 0.328 0.255 0.287
MemN2N 0.501 0.403 0.446
HMemN2N 0.538 0.436 0.482

NB
NB-History 
SVM
SVM+H
TTM
CNN-Attention
MemN2N
HMemN2N

Pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

K
1 2 3 4 5

NB
NB-History 
SVM
SVM+H
TTM
CNN-Attention
MemN2N
HMemN2N

R
ec

al
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
1 2 3 4 5

NB
NB+H 
SVM
SVM+H
TTM
CNN-Attention
MemN2N
HMemN2N

F1

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

K
1 2 3 4 5

Figure 2: Precision, Recall, and F1-Score with different number of recommendation hashtags

4.3 Result and Discussion
In Table 2, we list the trend recommendation performances on our dataset using the different methods.
The three metric results listed in Table 2 were obtained when we recommended the top hashtag for each
tweet, i.e., k = 1.

In Table 2, we can see that the proposed method HMemN2N is better than all the other methods
because it obtains the best result on all these metrics. Our approach provides improvements of 0.21
in precision, 0.181 in recall, and 0.195 in the F1-score over CNN-Attention, which is by far the state-
of-the-art method for this task. Compared with the degeneration model MemN2N, our approach also
shows a significant improvement. HMemN2N achieves a relative improvement of 7.4% in precision,
8.2% in recall, and 8.1% in the F1-score over MemN2N. The results show the practical applicability of
our model, which can be used to provide users with good recommendations.

Observing the comparisons of the “NB” and the “NB+H”, and the “SVM” and the “SVM+H”, it is
clear that the user interest history is a key ingredient in the recommendation, which is the strongest
confirmation that much important information in the user history can be used to recommend hashtags in
social media. This strongly suggests that we should find an effective method to extract useful information
from the user history. In this paper, we provide a memory network architecture to solve this problem.
The history is treated as an external memory, and a hierarchical attention mechanism is provided to help
the model to extract the information, where the attention operation can be performed repeatedly and
iteratively. The properties of this aspect of our proposed model have been proven to be effective by
observing the results shown in Table 2.

CNN-Attention is the latest method used for this task, and it showed a good performance in this work.
However, CNN-Attention only considers the content of the tweets and uses an attention mechanism to
find important words in tweets. With a intuition that users will tend to repeatedly use the same hashtag,
the performances of CNN-Attention and HMemN2N have a huge gap, which is mainly caused by not
considering the user information. The results of the topical translation model (TTM) were obviously
worse than those of our method, because it also only uses the textual information of the tweets.



Table 3: Parameter Influence on the evaluation collection
Model embedding dim # of hops Precision Recall F1
CNN-Attention 300 - 0.328 0.255 0.287

MemN2N
300 2 0.501 0.403 0.446
300 3 0.481 0.385 0.428

HMemN2N

300 1 0.521 0.421 0.466
50 2 0.462 0.370 0.411
100 2 0.508 0.410 0.454
200 2 0.530 0.430 0.475
300 2 0.538 0.436 0.482
400 2 0.536 0.437 0.481
500 2 0.538 0.437 0.482
300 3 0.534 0.433 0.478
300 4 0.528 0.428 0.473
300 5 0.521 0.421 0.466

Considering the comparison between MemN2N and HMemN2N, the results show that it is necessary
to introduce a hierarchical structure to store and select information. Each tweet has its own degree of
importance in different recommendations, and each word in each tweet should also be given individual
attention. Our model further utilizes an attention mechanism with a hierarchical structure to improve
the information extraction. Compared to MemN2N, HMemN2N had superior performances across the
board, which clearly demonstrated the effectiveness of the hierarchical mechanism.

In Figure 2, we list the result of models with different numbers of recommendation hashtags. The
number of hashtags recommended k ranges from 1 to 5. From Figure 2, we can see that HMemN2N
outperforms all of the baseline methods in all three metric curves with varying k. Clearly, the precision
result decreases as k increases, and the recall result increases as k increases. The highest F1-score is
obtained when we recommend the top 1 hashtag for each tweet. By analyzing the result, we can see that
our model achieves the best performance in this task because all of the curves for HMemN2N are the
highest in the graphs.

4.4 Parameter Influence

To evaluate the influence of the parameters used in our model, we changed the critical parameters to
those in our dataset and list the results in Table 3. The effects of different hop numbers are shown, and
the performances with different embedding dimensions are investigated.

From Table 3, we observe that changing the number of hops has some impact on the overall
performance. However, the results disprove that more hops are better, because when the number of
hops is larger than 2, the performances of HMemN2N and MemN2N are both decreasing.

The results listed in Table 3 also show the contribution of the embedding dimension to the
performance. We fix the number of hops to 2 and vary the embedding dimension. A higher embedding
dimension results in a better performance. When the dimension is low such as dim = 50 or dim = 100,
the result is very poor. Our proposed model performs very well with a high embedding dimension.
When the dimension is equal to 300, 400 or 500, we all can obtain the good performance. The size of
the embedding dimension represents the expression ability of each word, and a higher dimension can
enhance the text feature expression ability. To recommend a more appropriate hashtag, it is suggested to
choose a high embedding dimension.

5 Conclusion

In this paper, we proposed a novel end-to-end memory network architecture that combines a tweets
textual information and the corresponding user interest information for the hashtag recommendation task.
The user interest history was a key ingredient of the recommendation and was adopted in this work. We



treated the user history as an external memory and proposed a novel memory network with a hierarchical
attention mechanism to encode the user interest. To evaluate the proposed method, we collected data
from real word twitter services. The experimental results on the evaluation dataset demonstrated that
the proposed method could achieve better results than the current state-of-the-art methods for this task
because they do not consider the user information.
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