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Abstract

Despite having achieved great success for senti-
ment analysis, existing neural models struggle
with implicit sentiment analysis. This may be
due to the fact that they may latch onto spu-
rious correlations (“shortcuts”, e.g., focusing
only on explicit sentiment words), resulting
in undermining the effectiveness and robust-
ness of the learned model. In this work, we
propose a CausaL intervention model for im-
plicit sEntiment ANalysis using instrumental
variable (CLEAN). We first review sentiment
analysis from a causal perspective and analyze
the confounders existing in this task. Then, we
introduce an instrumental variable to eliminate
the confounding causal effects, thus extracting
the pure causal effect between sentence and
sentiment. We compare the proposed CLEAN
model with several strong baselines on both the
general implicit sentiment analysis and aspect-
based implicit sentiment analysis tasks. The re-
sults indicate the great advantages of our model
and the efficacy of implicit sentiment reason-
ing.

1 Introduction

The remarkable success that the field of sentiment
analysis has achieved in the past few years has been
derived from the use of increasingly high-capacity
neural models to extract correlations from data (Pe-
ters et al., 2018; Devlin et al., 2018; Liu et al.,
2019). Although having reached state-of-the-art
results, correlational predictive models can be un-
trustworthy (Guidotti et al., 2018): they may latch
onto spurious correlations (“shortcuts”), leading to
poor generalization.

One shortcut might be the explicit sentiment
word which is a powerful feature cue. Unfortu-
nately, such a shortcut severely harms the general-
ization and the robustness of the learned models
in implicit sentiment analysis (ISA), where there
are no explicit sentiment words about the topic
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sentiment word

confounder
（implicit, neg）

The food was definitely good, but when all was 
said and done, I just couldn't justify it for the 
price (including 2 drinks, $100/person)...

（explicit, pos）

Figure 1: An examples of confounding factors in im-
plicit sentiment analysis for ABSA.

or aspect (Russo et al., 2015). Figure 1 gives a
sample of aspect-based sentiment analysis (ABSA)
(Zhou et al., 2020b,a), which aims to predict the
sentiments of the aspects in the sentence. The
aspect “food” has explicit sentiment words “def-
initely good”, but aspect “price” does not. If the
model thoughtlessly relies on shortcuts to senti-
ment words, it may make an incorrect sentiment
prediction about the aspect “price”. In fact, there
are many other kinds of shortcuts that models may
learn, for example, the rhetorical question mood
expressed by the users (Ranganath et al., 2018) and
the co-occurrence of neutral words and sentiment
polarities (Wang and Culotta, 2020).

The above shortcomings can potentially be ad-
dressed by the causal perspective: knowledge of
causal relationships between observations and la-
bels can be used to formalize spurious correlations
and alleviate the predictor’s dependence on them
(Bühlmann, 2020; Veitch et al., 2021; Feder et al.,
2021). Motivated by a causal perspective, we incor-
porate domain knowledge of the causal structure
of the data into the learning objective. Specifically,
causal intervention is used to curb dependence on
shortcuts (e.g., “good → positive”) and improve
the ability to reason causal effect between sentence
and sentiment.

In this paper, we rethink the ISA task from a
causal perspective and unitize the casual interven-
tion on deep learning. We argue that the causal
effect obtained by reasoning directly from the sen-



tence (X) to the sentiment (Y ) without relying on
other extra prior stereotypical lexical impressions is
closer to the original semantic analysis. Our work
aims at eliminating the confounding causal effects
of C → Y and thus extracting the pure causal ef-
fect between sentence and sentiment. Inspired by
the instrumental variable in causality, we propose a
CausaL intervention model for implicit sEntiment
ANalysis using instrumental variable (CLEAN).
Different from the other work with causal inter-
vention like back-door adjustment (Landeiro and
Culotta, 2016), other variables like confounders
are not required to be observed. CLEAN contains
two-stage learning: (1) In the first stage, we model
the relationship between the instrumental variable
and sentence; (2) In the second stage, we dismiss
the spurious correlation between confounders and
sentiment by means of the relationship obtained
from the first stage.

To evaluate the effectiveness of our CLEAN, we
conduct a series of experiments on both the general
implicit sentiment analysis and aspect-based im-
plicit sentiment analysis. In particular, we compare
our model with several the mainstream baselines
and the results show the great advantages of our
model on ISA. We also validate the robustness of
the model by adversarial attack and case studies,
which proves that our model successfully dismisses
the spurious correlation caused by sentiment words
and extracts the pure causal effect.

The main contributions are summarized as fol-
lows.

• We rethink the implicit sentiment from a causal
perspective and proposed a casual intervention
model for implicit sentiment analysis (CLEAN).

• To remove the spurious causes of confounders,
we incorporate instrumental variable into neural
network to enhance its causal reasoning ability.

• We conduct experiments on diverse datasets, in-
cluding partially implicit and totally implicit sen-
timent, which shows our effectiveness and ratio-
nality to reason implicit sentiment.

2 Preliminaries

2.1 Structural Causal Model and Causal
Effect

In our paper, Structural Causal Model (SCM) (Gly-
mour et al., 2016) is represented as a directed
acyclic graphs (DAGs) G = {V,E} to reflect
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Figure 2: Causal Graph

causal relationships, where V denotes the set of
observational variables and E denotes the direct
causal effect (Figure 2(a)). X is a direct cause of
Y when variable Y is the child of X .

Variable X and Y is called treatment variable
and outcome variable respectively when observ-
ing the causal relationship between them. The
other variables we do not consider their causal re-
lationship are called error terms (ε), also known
as exogenous variables. Significantly, total effect
between X and Y , denoted as P (Y | X), is con-
ceptually different from causal effect of X → Y ,
denoted as P (Y | do(X = x)) because the
causal effect only involves the direct path from
X to Y , while the total effect involves all paths
between X and Y . Based on the ideal hypoth-
esis that none of the error terms will involve in
the path between X and Y , people usually treat
the total effect and the causal effect as the same.
But the actual fact is that a part of error terms
(we call it confounder (C)) serves as a common
cause of the treatment and outcome, denoted as
X ← C → Y . Consequently, the total effect
is practically different from the causal effect, i.e.
P (Y | do(X = x)) ̸= P (Y | X) and treatment-
outcome relationship may well be obscured by the
spurious correlation between C and Y generated
by confounder (Pearl, 2009; Hernán MA, 2020).

2.2 Instrument Variable for Causal
Intervention

To recover the gap between total effect P (Y | X)
and casual effect P (Y | do(X = x)) and de-
rive pure causal effect, we must “adjust” for po-
tential confounder (C) (Pearl, 1995). Fortunately,
applying causal intervention can extract the pure
causality from the correlation and therefore over-
come the problem of confounding bias. There are
four key interventions: randomized controlled trial,
backdoor adjustment, front-door adjustment, and
instrumental variable estimation. Randomized con-



trolled trials are simply not practicable for natural
language, and both the front-door and back-door
adjustment require additional observable variables.
However, the confounders (e.g., rhetoric confound-
ing word, such as rhetorical questions and sarcasm)
are too polymorphic to be observed exhaustively
for implicit sentiment analysis. We adopt the instru-
mental variable to dismiss the spurious correlations
instead of directly observing confounders (Figure
2(b)).

Before the intervention, we should find a suitable
instrumental variable (Z) that qualifies well the
requirements as follows:(Brito and Pearl, 2012)

1. Z is independent of all error terms ε that have
an influence on Y which is not mediated by X ,
Cov(Z, ε) = 0.

2. Z is not independent of X , Cov(Z,X) ̸= 0.
The intuition behind this definition is that all

correlation between Z and Y requires X to act as
an intermediary.

Generally, instrument variable estimation con-
tains two stages (Angrist and Pischke, 2008). In the
first stage, the coefficient α is obtained by regres-
sion estimation of X and Z, denoted as Cov(Z,X).
In the second stage, substitute X with the expres-
sions including Z obtained in the first stage into
the expression of Y and then regress Y on Z , de-
noted as Cov(Z, Y ). There is no confounding bias
between Y and Z owing to the restriction in the
definition of Z, i.e. Cov(Z, ε) = 0 . A simple lin-
ear model for IV estimation consists of 2 equations:

X = αZ + εX ;Y = ωX + εY (1)

where Y is the outcome variable (e.g., sentiment),
X is the treatment variable (e.g, sentence), Z is the
instrumental variable (e.g., stochastic perturbation),
and εX and εY are error terms including but not
limited to confounders(C). Under the conditions
above, it can be proved that the equation presents
an asymptotically unbiased estimate of the effect
of X on Y (Angrist et al., 1996).

ωIV =
1
n

∑n
i=1(zi − z)(yi − y)

1
n

∑n
i=1(zi − z)(xi − x)

=
Cov(Z, Y )

Cov(Z,X)
(2)

3 Our Approach

In this section, we introduce our CLEAN model
for implicit sentiment analysis (Figure 3). We first
rethink the ISA from a causal perspective (Section
3.1). Then, we adopt stochastic perturbation as

instrumental variable (Section 3.2) and estimate
instrumental variable in two stages (Section 3.3
and 3.4).

3.1 Sentiment Analysis from Casual
Perspective

Given a sentence X , consisting of a sequence
of tokens (x1, x2, ..., xn), our task aims to an-
alyze the polarity Y . For aspect-based sen-
timent analysis task, we concatenate the sen-
tence and the aspect as the input X =
(x1, x2, ..., xn, [SEP ], a1, a2, ..., am). In the cur-
rent method, a deep neural network is used as a
classifier to predict the sentiment polarity label as
output and the sentence as input (as Equation 3).

y = h(x;w) = Wxy · x+ εy (3)

where εy denotes as the error terms including con-
founders (c) and other errors (ε̂y).

The prediction above is based on the hypothe-
sis that error terms will not involve in the causal
path between X and Y and ignore the influence of
error terms mostly. Nevertheless, several research
has found that text classification systems based on
neural networks are biased towards learning fre-
quent spurious correlations (Leino et al., 2018). It
urges us to focus on the longtime unheeded but
unavoidable existence of confounder (C) in error
terms, which results in the overlooked gap between
total effect and causal effect, denoted as the path
X ← C → Y . The Equation 3 can be updated in
consideration of confounder (c) (Equation 4).

y = h(x;w) = Wxy · x+Wcy · c+ ε̂y (4)

where c and ε̂y denotes the confounder and other
error terms respectively, Wcy denotes the causal
effect of C → Y .

In previous studies, gender (Field and Tsvetkov,
2020), age, and address (Landeiro and Culotta,
2016) were found to be confounders in text classifi-
cation. As for ISA, we focus rather on the naturally
existing confounder within the text, i.e., sentiment
words. Sentiment words affect the form of the
text as a component of the text (i.e., the writer’s
word choice determines the form of expression)
and also affect sentiment expression (Xing et al.,
2020). The existence of sentiment words as con-
founder makes it difficult to distinguish the pure
causal effect of X → Y and the prediction indis-
criminately depends on the spurious correlation
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As for all the fancy finger swipes -- I just gave up and attached a mouse.
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Figure 3: The framework of our CLEAN.

between sentiment words and sentiment will fail in
ISA. The main forms are as follows:
• Inter-aspect Confounding Word Explicit sen-

timent words of other aspects with opposite sen-
timent in the sentence confounds the prediction
effect of the current aspect.
• Inter-clause Confounding Word In an adver-

sative compound sentence, the other clauses with
opposite semantics confound the prediction effect
of the current clause.
• Rhetoric Confounding Word Sentiment

words conveying the opposite of the norm in rhetor-
ical devices such as rhetorical questions and sar-
casm confound the prediction effect.
• Dynamic Neural Confounding Word Neutral

words show dynamic sentiment polarity in different
contexts, but the model trained by biased data only
learns the spurious correlation of one polarity.

We also provide a detailed analysis of the con-
founder in case studies (Section 5.2).

Inspired by causal intervention with instrumen-
tal variable (Section 2.2), we adopt two-stage in-
strument variable estimation for ISA to achieve
the goal that distinguishes the pure causal effect of
X → Y without any spurious correlations, denoted
as P (Y | do(X = x)).

3.2 Stochastic Perturbation as Instrumental
Variable

For text, the two restrictions of instrumental vari-
able could be translated into two basic opinions:
(1) instrumental variable Z will not influence the
sentiment polarity via any other casual path except
through sentence X; (2) instrumental variable Z

will influence the format of sentence X . Intuitively,
we choose the stochastic perturbation as the instru-
mental variable of ISA. Inspired by the work of data
augmentation (Guohang et al., 2020), we choose
random swap, random deletion, random insertion,
and synonym substitution as stochastic perturba-
tion: A) Random Swap: Swap word randomly;
B) Random Deletion: Delete word randomly with
probability p; C) Random insertion: Insert word
randomly by word embeddings similarity; D) Syn-
onym Substitution: Substitute word by WordNet’s
synonym. It fortunately meets the requirements of
instrumental variable well: (1) stochastic perturba-
tion obviously has no independent effect on senti-
ment, except through augmentation sentences, i.e.
Cov(Z, ε) = 0; (2) stochastic perturbation above
will definitely change the sentence into another
form, i.e. Cov(Z,X) ̸= 0.

3.3 The First Stage of CLEAN
Following the traditional pattern of instrumental
variable estimation (Section 2.2), the first stage
of CLEAN is to establish the causal relationship
between stochastic perturbation (Z) and sentence
(X), i.e. Z → X . We use two open source tools1

to generate augmentation samples xz from the orig-
inal sample x and the formal expression is as fol-
lows.

xz = f(x, z)

where f(·) denotes the different stochastic perturba-
tion on the original sentence. For a specific stochas-
tic perturbation zi, we have xzi = f(x, zi) ≈ αi ·x.

1https://github.com/jasonwei20/eda_nlp
https://github.com/makcedward/nlpaug

https://github.com/jasonwei20/eda_nlp
https://github.com/makcedward/nlpaug


Table 1: The statistics information of the datasets. IS means the percent of samples that are implicit sentiment.

Dataset Postive Neural Negative IS (%)
Train Test Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196 28.59 23.84
Laptop 987 341 866 128 460 169 30.87 27.27
CLIPEval 435 144 205 72 640 155 100.00 100.00

To obtain the accurate value of α which can well
represent the relationship between x and xz , a neu-
ral network was constructed based on the BERT
and α was set as a self-learning parameter.

αi = min
α

∑
xzi=f(x,zi)

∥ M(xzi)− α · M(x) ∥

whereM denotes a text encoder (e.g., BERT).

3.4 The Second Stage of CLEAN

Substituting the relation above between original
sample x and augmentation sample xzi into Equa-
tion 4, we will get the y |x=xzi

with different pro-
portionality coefficient α obtained from the first
stage.

y |x=xzi
= Wxy · xzi +Wcy · c+ ε̂y

= αi ·Wxy · x+Wcy · c+ ε̂y

= αi · y |do(x=x) +Wcy · c+ ε̂y

(5)

where y |do(x=x) denotes the prediction only along
the path X → Y .

As the neural network is not totally linear, we
slightly generalize the usage of two stages in instru-
mental variable. We set the dismission of influence
of the confounder as a regularization function in-
stead of directly calculating the effect between X
and Y as a single value (Equation 2), which is
obviously more fit for deep learning method.

LIV =
∑
i ̸=j

∥ αj · y |x=xzi
−αi · y |x=xzj

∥

The reason we just model the prediction y |x=xzi

and unitize the regularization loss on it is that the
essence of theLIV is to force the model to suppress
the confounding effect caused by sentiment words.
It can be easily proved by substituting the y |x=xzi

with Equation 5 obtained by two-stage learning.
The benefit is obviously that we can suppress the
confounding effect without directly observing the
confounders (c).

LIV =
∑
i ̸=j

∥ (αi − αj) · (Wcy · c+ ε̂y) ∥

In addition, the model should not go to the
other extreme, i.e., ignore sentiment words entirely,
which would be inconsistent with the normal pro-
cess of natural language understanding. We set a
hyperparameter β to achieve balance and combine
the causal regularization loss function LIV with
the conventional cross-entropy loss LCE and the
influence of the β is analyzed in Section 5.3.

LALL = LCE + βLIV

4 Experiment

4.1 Datasets and Metrics

Implicit Sentiment Analysis To show our
model’s better performance in understanding im-
plicit sentiment, we evaluate the implicit polarity
prediction on a total implicit dataset, CLIPEval
from SemEval 2015 task 9 (Russo et al., 2015),
which consists of self-reported entity reviews col-
lected from psychological research with 1,280 sen-
tences for the training and 371 for the test.

Aspect-based Implicit Sentiment Analysis As
our aim to dismiss the spurious correlation between
explicit sentiment words and polarity, we also con-
ducted experiments on both explicit and implicit
datasets, Laptop and Restaurant review from Se-
mEval 2014 task 4 (Pontiki et al., 2014). The seg-
mentation of explicit sentiment (ESE) and implicit
sentiment (ISE) is based on the work of (Li et al.,
2021b) based on the annotation of opinion words
(Fan et al., 2019).

We adopt two widely used metrics accuracy and
macro-F1 to evaluate the performance of our model
and the baselines.

4.2 Baselines

To investigate the effectiveness of our CLEAN

model, we compare it with several typical baseline
models for implicit sentiment analysis and aspect-
based implicit sentiment analysis.

Implicit Sentiment Analysis We select four
popular baselines for implicit sentiment analysis,
which are listed as follows. SHELIFBK (Dragoni,



Table 2: The main results for aspect-based sentiment analysis. For ESE and ISE, we provide the F1 score. We use
the results reported in (Li et al., 2021b). The baselines with † are our implementation.

Restaurant Laptop
Acc F1 ESE ISE Acc F1 ESE ISE

ATAE-LSTM 76.90 62.64 84.16 53.71 65.37 62.92 75.69 37.86
IAN 76.88 67.71 86.52 46.07 67.24 63.72 75.86 44.25
RAM 80.23 70.80 85.11 55.81 74.49 71.35 75.86 44.25
MGAN 81.25 71.94 85.18 60.04 75.39 72.47 76.16 56.31NN

TransCap 79.55 71.41 86.52 59.93 73.87 70.10 77.16 60.34
ASGCN 80.77 72.02 84.29 62.91 75.55 71.05 75.46 57.77
BiGCN 81.97 73.48 87.19 59.05 74.59 71.84 79.53 62.64
CDT 82.30 74.02 88.79 65.87 77.19 72.99 77.53 68.90

GNN

RGAT 83.30 76.08 89.45 61.05 77.42 73.76 80.17 65.52
BERT-SPC 83.57 77.16 89.21 65.54 78.22 73.45 81.47 69.54
CapsNet+BERT 85.09 77.75 91.68 64.04 78.21 73.34 82.33 67.24
BERT-PT 84.95 76.96 92.15 64.79 78.07 75.08 81.47 71.27
BERT-ADA 87.14 80.05 94.14 65.92 78.96 74.18 82.76 70.11
R-GAT+BERT 86.60 81.35 92.73 67.79 78.21 74.07 82.44 72.99
TransEncAsp 77.10 57.92 86.97 48.96 65.83 59.53 74.31 43.20
TransEncAsp+SCAPT 83.39 74.53 88.04 68.55 77.17 73.23 78.70 72.82
BERT-SPC† 85.09 77.19 91.68 64.04 77.90 73.50 80.99 69.71
BERT-SPC† (Aug4) 84.20 76.55 90.50 64.04 76.65 70.86 81.64 63.43
BERT-SPC† (Aug8) 80.98 67.77 90.39 50.94 75.71 71.62 77.97 69.71

BERT

BERT-SPC† (Aug16) 77.59 67.44 85.35 52.81 74.61 69.92 77.97 65.71
Ours CLEAN 87.05 81.40 92.50 69.66 80.41 77.25 81.21 78.29

2015), ATTLSTM (Lin et al., 2017), MTL (Zheng
et al., 2018), BERT-SPC (Xu et al., 2019).

Aspect-based Implicit Sentiment Analysis The
commonly used baselines can be split into three
parts, neural network, graph neural network, and
BERT-based models, which are given as follows.

Neural Network: ATAE-LSTM (Wang et al.,
2016), IAN (Ma et al., 2017), RAM (Chen et al.,
2017), MGAN (Fan et al., 2018).

Graph Neural Network: TransCap (Chen and
Qian, 2019), ASGCN (Zhang et al., 2019), BiGCN
(Zhang and Qian, 2020), CDT (Sun et al., 2019),
RGAT (Wang et al., 2020).

BERT-based Models: BERT-SPC (Xu et al.,
2019), CapsNet+BERT (Jiang et al., 2019), BERT-
ADA (Rietzler et al., 2020), R-GAT+BERT (Wang
et al., 2020), TransEncAsp (Li et al., 2021b),
TransEncAsp+SCAPT (Li et al., 2021b).

Moreover, to explore the influence of the aug-
mentation sentences, we add them into the train-
ing dataset for our basic model (BERT-SPC). For
example, BERT-SPC (Aug4) means we add four
augmentation samples for each example.

4.3 Implementation Details
We implement CLEAN with PyTorch based on
Hugging Face Transformer 2 and run them on the
GPU(NVIDIA GTX 2080ti). During training, we
set the coefficient λ of L2 regularization item is

2https://huggingface.co/bert-base-uncased.

0.01, 10−5 and dropout rate is 0.1. The learning
rate is set as 2e-5 and the batch size is set as 16.
Adam optimizer (Kingma and Ba, 2014) is used to
update all the parameters.

5 Experimental Analysis

5.1 Main Results

To evaluate the performance of our CLEAN model,
we compare it with several mainstream baseline
models for both the implicit sentiment analysis and
aspect-based implicit sentiment analysis (Table 3
and Table 2). We find the following observation
from these tables. First, our model outperforms
all the baselines in most cases. Particularly, our
model obtains the best F1 scores over all the three
datasets of two tasks. Second, our CLEAN strat-
egy significantly improves the performance of the
baseline. CLEAN improves more than two points
in terms of F1 over all the datasets compared with
BERT-SPC, which is the base of our model. Third,
our model can improve the performance of implicit
sentiment analysis effectively. For example, com-
pared with the BERT-SPC†, we obtain more than
five points improvement on ISE over both Restau-
rant and Laptop. Also, we obtain the best results of
implicit sentiment analysis over CLIPEval. Forth,
the model that regards the augmentation sentence
as a data augmentation (e.g., BERT-SPC† (Aug4))
performs even worse than the one without aug-
mentation as noise may exist. This shows that our

https://huggingface.co/bert-base-uncased


Sentence Example Target BERT-SPC ISAIV
E1 The food was definitely good , but when all was said and done, I just 

couldn't justify it for the price (including 2 drinks, $100/person)...
price positive❌ negative✔

E2 And as for all the fancy finger swipes -- I just gave up and attached a 
mouse.

mouse negative❌ neutral✔

E3 I was a little concerned about the touch pad based on reviews, but 
I've found it fine to work with.

touch pad negative❌ positive✔

E4 How can hope to stay in business with service like this? service positive❌ negative✔
E5 The steak melted in my mouth. steak negative❌ positive✔
E6 15% gratuity automatically added to the bill. gratuity positive❌ positive❌

Figure 4: Some examples of case studies.

Table 3: The main results for implicit sentiment analysis.
We use the results reported in (Xiang et al., 2021). The
baselines with † are our implementation.

Method CLIPEval
Acc F1

SHELLFBK 56.00 54.00
ATTLSTM 82.43 82.21
MTL 82.94 83.17
BERT-SPC† 87.06 84.74
BERT-SPC† (Aug4) 85.71 83.56
BERT-SPC† (Aug8) 86.52 85.30
BERT-SPC† (Aug16) 85.44 84.54
CLEAN 88.95 87.49

CLEAN algorithm can help learn the implicit senti-
ment reasoning behind the data.

5.2 Case Studies

We present five samples in Figure 4 to explain
the four main types of confounders (Section 3.1),
which shows the effectiveness and rationality of
our model to reason implicit sentiment. (1) Inter-
aspect Confounding Word. In example E1, “defi-
nitely good” is the sentiment words of aspect food,
implying positive sentiment but confounds the pre-
diction of aspect price. In E2, the user expresses
a negative sentiment towards aspect finger swipes
with opinion word “fancy”, which confounds the
prediction of aspect mouse. (2) Inter-clause Con-
founding Word. In E3, the first and second clauses
form an adversative relation, and the true meaning
of the expression is that the mouse works well,
but the sentiment word “a little concerned” in the
first clause confounds the prediction. (3) Rhetoric
Confounding Word. In E4, the customer used the
rhetorical device of a rhetorical question to express
that the restaurant’s service was terrible, but the
existence of the word “hope” confounds the pre-
diction, (4) Dynamic Neural Confounding Word.
In E5, the word “melted” is absolutely a neutral
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Figure 5: The influence of β

word, but when we directly count the proportion of
aspect-level sentiment polarity that co-occur with
“melted”, we surprisingly find that 83.33% aspect
polarity is negative, which well explains why the
previous model predicts “negative” strangely. Due
to the unbalanced distribution of training data, the
model tends to tag the neural word with specific
sentiment polarity and predict based on this spuri-
ous correlation learned superficially before.

5.3 Further analysis

Influence of Augmentation Sample Number.
We explore the influence of augmentation sample
number here (Table 4). The influence of sample
number on model performance depends on two con-
flicting factors: the degree of deviation from the
original sentence and the chance to find more poten-
tial confounders. With the increase in sample num-
ber, the model has a greater chance of finding more
potential confounders and adjusting for them. On
the other hand, a larger generation samples number
means that more samples deviating from the origi-
nal sentence are involved in the learning procedure,
and therefore the accuracy of prediction decreases.
Over Restaurant, the two conflicting factors reach
a better balance at 8; while on Laptop, the negative
effect of semantic deviation outweighs the positive



Table 4: The influence of augmentation sample number.

#Num Restaurant 0.6 Laptop 0.4
Acc F1 ESE ISE Acc F1 ESE ISE

4 86.88 80.99 92.50 68.91 80.41 77.25 81.21 78.29
8 87.05 81.40 92.50 69.66 78.68 75.23 79.70 76.00
16 85.09 77.75 91.21 65.54 78.06 75.04 79.05 75.43

Table 5: The results of robustness.

Model Restaurant (Trans.) Laptop (Trans.)
Acc F1 Acc F1

BERT-SPC 57.04 44.43 51.05 41.01
CLEAN 58.77 48.56 59.45 43.24

effect of correction for more confounders, and the
best result is achieved at 4.

Influence of β. Either emphasizing sentiment
words only or completely ignoring them is not rea-
sonable. The purpose of our hyper-parameter beta
is to strike a balance between these two terms (Fig-
ure 5). In Laptop and CLIPEval, performance is
best at 0.4 and 0.3 relatively, and both show a trend
of high in the middle and low on both sides, indi-
cating that our hypothesis is rational.

Robustness. We also analyze the robustness of
our proposed CLEAN (Table 5). We test our
model on a robustness testing dataset, Revnon of
TextFlint (Wang et al., 2021), which reverses the
sentiment of the non-target aspects with originally
the same sentiment as target. Our model outper-
forms the model BERT-SPC without causal inter-
vention, which means CLEAN can also improve
the robustness by learning the implicit sentiment
reasoning.

Limitation. We also analyze wrong samples and
find the model may fail when encountering the ex-
pression with unusual knowledge. In Figure 4 E6,
due to the lack of prior knowledge about “gratuity",
“automatically added" is likely to be perceived as a
good thing. Admittedly, our work mainly focuses
on the reasoning ability and doesn’t integrate ex-
ternal corpus and knowledge and therefore lacks
abundant prior knowledge. The better combination
of prior knowledge and causal inference is also an
intriguing and worth exploring field.

6 Related Work

6.1 Implicit Sentiment Analysis

Implicit sentiment analysis (ISA) task plays an im-
portant role in sentiment analysis field (Liu, 2012;
Zhou et al., 2019, 2020c). Early studies mainly

trained machine learning models based on hand-
crafted features or explicit characterization of im-
plicit feature information. Some studies argued
that seemingly neural words actually contain emo-
tional content and then construct a lexicon (Feng
et al., 2013; Castelló and Stede, 2017). Label prop-
agation was used to judge the affective polarity of
the words automatically (Ding and Riloff, 2016;
Li et al., 2021a). Moreover, Balahur et al. (2011)
proposed to build a commonsense knowledge base
(EmotiNet) with the concept of affective value and
the sentiment.

Recent efforts (He et al., 2018; Tang et al., 2020)
used syntax information from dependency trees to
enhance attention-based models. Using syntactic
analysis tree and CNN, Liao et al. (2019) analyzed
fact-implied implicit sentiment by fusing multi-
level semantic information, including sentiment
target, sentence, and context semantic. A lot of
works (Zhang et al., 2019; Sun et al., 2019; Wang
et al., 2020) incorporated tree-structured syntactic
information via graph neural networks to capture
aspect-aware information in text. Another method
is to utilize external corpus and pre-trained knowl-
edge to enhance semantic awareness of models (Xu
et al., 2019; Rietzler et al., 2020; Dai et al., 2021;
Li et al., 2021b; Zhou et al., 2020b).

The existing methods mainly improve the ISA by
integrating external corpus and knowledge. How-
ever, the knowledge is always not complete which
will influence the models’ performance. In this pa-
per, we solve it via causal intervention to learn the
reasoning behind the sentiment classification.

6.2 Causality for NLP

Recently, some researchers are beginning to com-
bine causality and NLP to create more robust and
interpretable models (Wood-Doughty et al., 2018;
Tang et al., 2021). Most of the papers integrated
backdoor and counterfactual into NLP tasks. Par-
ticularly, Landeiro and Culotta (2016) applied the
back-door adjustment to text classification by con-
trolling the artificially predetermined confounding
variable. Feng et al. (2021) introduced counterfac-
tual reasoning into the model learning process by
generating representative counterfactual samples



and comparing the counterfactual and factual sam-
ples. Veitch et al. (2021) utilized distinct regulariza-
tion schema for distinct causal structure to induce
counterfactual invariance. Niu et al. (2021) utilized
the counterfactual inference on VQA models by
subtracting the language bias as direct language
effect from the total causal effect.

Different from these studies, we explore the
causal graph for ISA and incorporate it using the
causal intervention.

7 Conclusion

In this paper, we proposed a causal intervention
model for implicit sentiment analysis using instru-
ment variable (CLEAN). Given that the current
model indiscriminately focuses on the correlation
between sentiment and sentiment words and con-
sequently performs poorly in implicit sentiment
analysis as the explicit sentiment words disappear,
we rethink the implicit sentiment analysis from a
causal perspective and analyze the four main forms
of sentiment words as potential confounders. In-
spired by the instrumental variable of causal in-
tervention, we adopt stochastic perturbation as in-
strumental variable and construct a model with
two-stage learning. Across three different datasets,
including general implicit sentiment analysis and
aspect-based sentiment analysis, our CLEAN shows
great advantages in implicit sentiment.
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