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Abstract

Large pre-trained language models (PLMs)
have demonstrated superior performance in
industrial applications. Recent studies have ex-
plored parameter-efficient PLM tuning, which
only updates a small amount of task-specific
parameters while achieving both high efficiency
and comparable performance against standard
fine-tuning. However, all these methods ignore
the inefficiency problem caused by the task-
specific output layers, which is inflexible for us
to re-use PLMs and introduces non-negligible
parameters. In this work, we focus on the text
classification task and propose plugin-tuning, a
framework that further improves the efficiency
of existing parameter-efficient methods with a
unified classifier. Specifically, we re-formulate
both token and sentence classification tasks
into a unified language modeling task, and
map label spaces of different tasks into the
same vocabulary space. In this way, we can
directly re-use the language modeling heads of
PLMs, avoiding introducing extra parameters
for different tasks. We conduct experiments
on six classification benchmarks. The exper-
imental results show that plugin-tuning can
achieve comparable performance against fine-
tuned PLMs, while further saving around 50%
parameters on top of other parameter-efficient
methods.

1 Introduction

In many industrial applications about natural lan-
guage processing, it becomes a de-facto paradigm
that we first pre-train large-scale language models
(PLM) (Devlin et al., 2019; Peters et al., 2018;
Radford et al., 2019) on external corpora and then
fine-tune them on target tasks. However, each fine-
tuned PLM is generally applicable to only one
task. As the number of applications increases,
deploying independent instances of fine-tuned
PLMs for different tasks significantly increases the
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Figure 1: An intuitive overview of plugin-tuning. Plugin
tuning only trains and stores a parameter-efficient plugin
rather than a full PLM for each task. Different tasks
share a unified output layer despite different label
spaces.

computation and storage costs. For instance, GPT-
3 (Brown et al., 2020) contains 175B parameters,
which makes it almost impossible to fine-tune and
deploy GPT-3 for target tasks. Even if large-scale
fine-tuned PLMs are available, they are also not
conducive to community distribution and sharing.

Recently, a new branch of researches named
parameter-efficient tuning (Guo et al., 2021; Zaken
et al., 2021; Hu et al., 2022) have received much
attention in the NLP community. Compared to
standard fine-tuning, these methods fine-tune only
a small portion of the model parameters while
keeping most of the PLM parameters frozen (Ding
et al., 2022). The minimal trainable parameters
not only remarkably promote the deployment and
storage efficiency when adapting PLMs, but also
make it feasible to train large-scale PLMs such
as GPT-3. Additionally, recent works validate
that the parameter-efficient methods can achieve
comparable performance with full-parameters fine-
tuning in a wide range of NLP applications
(Aghajanyan et al., 2020; Hu et al., 2022; Ding
et al., 2022).

However, all the existing parameter-efficient
methods ignore the inefficiency problem caused by
the specific output layers for different tasks, which
results in two problems. First, utilizing different
task paradigms and retaining different output layers



is inflexible and hinders the community model
distribution and sharing. Second, the parameters
introduced by the task-specific output layers are
non-negligible especially under the parameter-
efficient scenarios. These two essential issues
limit parameter-efficient tuning from being further
efficient.

In this work, we propose plugin tuning, a
framework to further improve all the parameter-
efficient methods in classification tasks. We unify
all the classification tasks into a same paradigm,
thus different tasks can be performed with a unified
classifier. Meanwhile, no trainable parameter is
required for training the classifier. Specifically, we
re-formulate different tasks into a same language
modeling task, and directly reuse the language
model heads of PLMs for classification. The label
spaces of different tasks are mapped to task-specific
label words, all belonging to a unified vocabulary
space. To select the proper label words, we propose
a principled algorithm that is applicable to both
token and sentence classification tasks. In this way,
the efficiency of all the parameter-efficient methods
can be largely promoted. Additionally, the unified
task paradigm provides a new way to perform
classification tasks with generative PLMs such as
GPT-3, which is unexplored in existing parameter-
efficient methods. Our codes are publicly available
at Github1.

Our contributions can be summarized as follows:

• We propose a unified paradigm for all classifi-
cation tasks to further improve the efficiency
based on all parameter-efficient methods.

• We propose a principled way to select proper
label words for both token and sentence
classification tasks. Intensive experiments are
conducted to analyze the proposed method.

• Plugin-tuning can achieve comparable perfor-
mance with full-size fine-tuning on six tasks,
as well as save up to 50% of the parameters
required by the parameter-efficient tuning.

2 How to Boost Efficiency of Fine-tuning?

2.1 Standard Fine-tuning

We start with the introductions of fine-tuning PLM
on token and sentence classification tasks, followed
by the disadvantages of fine-tuning.

1https://github.com/xzhou20/Plugin-tuning

Given a sequence of tokens X = [x1, ...xn], the
PLM usually encodes X with multi-layer bidirec-
tional Transformer and outputs its representation
of final hidden state:

H = encoderΦ(X), (1)

where H ∈ Rn×dh , dh is the dimension of the
hidden state and Φ is the parameters of transformer
layers. After encoding, a simple softmax classifier
is added to the top of encoder to predict the target
label based on the task.

Suppose we are given a sentence classification
task S with label space LS ∈ RlS . The aim of S is
to predict a label y ∈ LS of sentence X:

p(y|hcls) = Softmax(WShcls), (2)

while a token classification task T aims to predict
a label yi ∈ LT of each xi in sentence X:

p(yi|hi) = Softmax(WThi), (3)

where WS ∈ Rdh×lS and WT ∈ Rdh×lT .
During training phase, the standard fine-tuning

directly updates all parameters to minimize the
following objective:

Sentence : min
ΦS ,WS

− log(P (y|X)) y ∈ LS ,

(4)

Token : min
ΦT ,WT

−
n∑
i

log(P (yi|X)) yi ∈ LT ,

(5)

where ΦS , WS , ΦB and WT are fine-tuned param-
eters for target tasks. A major drawback of fine-
tuning is the need to update all parameters of the
PLM. Updating large-scale Φ results in significant
computation costs, and fine-tuned parameters ΦS

and ΦB are also inefficient to store and deploy.

2.2 Not All Parameters are Critical
The question to be asked here is: do we really
need to update all the parameters? Although
the theoretical questions are not well explored,
empirical evidence shows that: not all parameters
are critical to be updated (Aghajanyan et al., 2020;
Chen et al., 2020). Recent parameter-efficient
tuning with distinct tuned parameter selection
could achieve comparable performance to standard
fine-tuning. In this way, we do not fine-tuning
the large-scale Φ, but instead update selected ∆Φ
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Figure 2: An overview of plugin-tuning. (a) is the three types of parameter-efficient methods, which can be used as
our plugin. (b) shows the flow of plugin-tuning, we input the text and task-specific plugin to the deployed PLM, the
PLM influenced by plugin outputs the label words in the sentence. The actual labels are obtained by label word
mapping. “John” and “great” are label words selected by querying language model, respectively representing label
“PER” for task NER and label “Positive” for task SA.

where |∆Φ| ≪ |Φ|. Ding et al. (2022) divides
existing parameter-efficient methods into three
groups: (1) addition-based methods (Houlsby et al.,
2019) introduce extra trainable neural modules
or parameters that do not exist in the original
model or process. (2) specification-based methods
(Zaken et al., 2021) only update certain parameters
in the original model. (3) reparameterization-
based methods (Hu et al., 2022) transform existing
parameters to a smaller size. An example of
above methods is shown in Figure 2 (a). In this
paper we refer to these task-specific parameters ∆Φ
collectively as plugin for convenience, regardless
which parameter-efficient method is used.

2.3 Output Layers: An Overlooked Problem
A critical problem overlooked in parameter-
efficient methods is the efficiency problem of
different output layers. Aghajanyan et al. (2020)
shows that only a few thousand parameters are
enough to handle various NLP tasks. However, no
matter how efficient the method is, the task-specific
output layers introduce non-negligible parameters,
especially when encountering a large label space.
(e.g., ten labels will introduce 10,240 parameters
of classifier when using bert-large) . In addition
to efficiency, parameter-efficient methods keep
the model parameters consistent with pre-trained

parameters, but we do not keep the optimization
objective consistent with pre-training. The gap
between downstream tasks and pre-training tasks
may lead to sub-optimal performance (Liu et al.,
2021a). This problem can not handle easily
because of the different label spaces for different
tasks. Therefore, the task-specific output layers
hinder the further improvement of effectiveness
and efficiency for all parameter-efficient methods,
which cannot be overlooked.

3 Our Method

In this work, we propose plugin-tuning, a unified
framework to improve parameter-efficient tuning.
Our method is based on parameter-efficient tuning
but avoids the problems caused by task-specific
output layers. An overview of plugin-tuning is
shown in Figure 2. The plugin here refer to
the trainable parameters required for parameter-
efficient method. We inject the plugin to the frozen
PLM, and the plugin is applied to a specific position
to control the PLM, as shown in Figure (a). The
PLM will predict the label word in label-related
position of sentence, and the real label can be
obtained by label word mapping. Any parameter-
efficient method can serve as our plugin. We only
optimize the lightweight plugin during training



while keeping other parameters frozen. The details
of the unified classifier are shown in the following
subsections.

3.1 Unified Classifier
As shown in Section 2.3, the different label spaces
make it hard to share a unified output layer.
Inspired by prompt-base tuning (Liu et al., 2021b;
Ma et al., 2022), we find that a label can be
represented by a word. In this manner, different
label spaces can be mapped to the same vocabulary
space. Thus, we propose a unified classifier to solve
this problem by re-using the language model head.
To this end, we reformulate token and sentence
classification tasks as a unified language modeling
task, the PLM is trained to predict a label word
as an indication of the real label. Furthermore,
we propose an algorithm to search label words
automatically by querying the language model.

Take sentiment classification as an example, we
insert the “It was [MASK].” to the end of the
sentence, and the PLM is expected to predict a
word that indicates the sentiment at the position of
[MASK]. As for token classification such as named
entity recognition (NER), the PLM are trained to
predict a a word that is more common than the
original entity word, as shown in Figure 2 (b).

Formally, suppose we are given a classification
task with label space L, a vocabulary V , a label
word mapping function M : L → V and a
input X = [x1, ..., xn]. The classification task is
reformulated to assign a word yi ∈ V to the special
position:

p(yi|X) = Softmax(Wlmhi), (6)

where h is the final hidden state and i is the label-
related position(position of [MASK] for sentence
classification, all positions for token classification).
In this way, different tasks can re-use the language
model head Wlm as the unified classifier, diverse
label space can be all adapted to the vocabulary V .
Both token and sentence classification tasks have a
unified language modeling objective:

Unified : min
∆Φ
−

∑
i∈Yidx

log(P (yi|X)) yi ∈ V,

(7)

where ∆Φ is the trainable parameters required
by parameter-efficient tuning and Yidx are label-
related positions, yi is the label word, which is
mapped according to its label. We make the word

Algorithm 1 Label Word Searching
Input: Training Set D = {Xi, Yi}Ni=1.
Parameter: Pre-trained language model LM .
Output: Label Word Map M .

1: Let label word map M = ∅;
2: for c ∈ L do
3: Let freqc = ∅;
4: end for
5: for (X = {xi}ni=1, Y = {yi}ni=1) ∈ D do
6: Let Ŷ = LM(X);
7: if i is related to a label c then
8: Select the ten words with the highest

probability from ŷi and update freqc;
9: end if

10: end for
11: for c ∈ L do
12: The most frequent word wfreq ∈ freqc is

selected as label word of c, M [c]← wfreq;
13: end for
14: return M

of label “O” predict itself in token classification. In
prediction phase, we take the word with the highest
probability in the PLM’s prediction and map it to
real labes by label word mapping function M .

3.2 Label Word Search

To avoid the cumbersome label word engineering,
we propose a method to search the label word
automatically. To keep the consistency of pre-
training tasks and downstream tasks, we leverage
the original PLM for label word searching. Since
the classification tasks are reformulated to language
modeling task, a appropriate label word can be
chosen by the PLM itself. We directly leverage
the original pre-trained language model predict the
candidate words at their label-related position and
select the appropriate labeled words based on the
frequency of candidate words under that label. The
process is shown in Algorithm 1.

4 Experiment

We verify the effectiveness of the plugin-tuning
method on a large number of tasks including
both token and sentence classification tasks, and
select representative parameter-efficient methods to
demonstrate that plugin-tuning is compatible with
arbitrary parameter-efficient methods. In addition,
we also simulate real scenarios and counted the



deployment time to further verify the efficiency of
our method in deployment. Finally, we provide
a comprehensive analysis of the unified classifier,
which is the main module of the plugin-tuning.

4.1 Dataset
To verify the effectiveness of the our method,
we conduct experiments on six representative
classification tasks. Next, we describe the datasets
selected for token classification and sentence
classification respectively. The statistics of the
datasets are summarized in Table 1.

We evaluate the proposed method on three
token classification tasks, including Named Entity
Recognition (NER), Part of Speech tagging (POS)
and text chunking (Chunking). For named entity
recognition, we select the CoNLL 2003 (Sang and
De Meulder, 2003), a newswire domain benchmark.
For part of speech tagging, we select the Wall Street
Journal (WSJ) data from the Penn TreeBank v3
(Marcus et al., 1993). For text chunking, we select
the CoNLL 2000 (Tjong Kim Sang and Buchholz,
2000). BIO2 tagging scheme is used for NER and
chunking.

As for sentence classification tasks, we select
three common tasks, Sentiment analysis (SA),
Natural Language Inference (NLI) and Question
Classification (QC). We select the dataset based on
the amount of data from GLUE (Wang et al., 2018).
For SA, we chose the commonly used SST2. For
NLI, we chose MNLI, a dataset from GLUE with a
large amount of data to challenge our method. For
QA, we choose TREC50 with only thousands of
data to explore whether plugin-tuning can perform
well in this scenario. The test sets for these three
datasets are not publicly available, so we use the
original validation set directly as the test set.

Task Dataset #Train #Test Labels

NER CoNLL2003 204,567 46,666 9

CHK CoNLL2000 211,727 47,377 23

POS WSJ 912,344 129,654 46

SA SST2 67,350 873 2

NLI MNLI 392,702 9815 3

QC TREC50 5452 500 47

Table 1: Statistics of the datasets. # means the number
of sentences in SA, NLI and RC, and means the number
of tokens in the NER, Chunking and POS.

4.2 Baseline
We select representative methods from the three
types of delta tuning to verify whether plugin
tuning is compatible with different delta tuning
methods. Besides that, the standard fine-tuning is
used to show the proper performance of PLMs.
Fine-Tuning (Liu et al., 2019) optimizes all
parameters of the PLM for each task, which is
the main approach for transferring the PLM to
downstream tasks.
LoRA (Hu et al., 2022) is a reparameterization-
based baseline. LoRA injects trainable low-rank
matrices into transformer layers to approximate
the weight updates, which can achieve good
performance with extremely small parameters.
BitFit (Zaken et al., 2021) is a specification-based
baseline. It only trains the bias term and classifier
in the PLM.
Adapter (Houlsby et al., 2019) is a popular
addition-based method of parameter-efficient tun-
ing, which adds adapter layers to every transformer
blocks. Only the adapter layers and the classifier
are trainable during the training phase.
Plugin-tuning is our proposed method, which can
be applied to any parameter-efficient methods to
boost its efficiency and performance.

4.3 Implementation Details
In this work, we implement the parameter-efficient
methods with roberta-base (Liu et al., 2019). Each
parameter-efficient method follows the official
code. AdamW optimizer and linear decaying
schedule are used for all baselines. We search
the learning rate from 1e-3 to 1e-5, epochs from
{5, 10, 30} with a batch size of 16. We report
the best results on the test set for each task. The
model and hyperparameters are selected based on
the validation set. The label word searching is also
based on roberta-base. The selected label word is
shown in the appendix.

4.4 Main Results
In this section, we verify the impact of using
plugin-tuning on the performance and parameters
of parameter-efficient tuning on six tasks. The
results are shown in Table 2. A detailed analysis of
the experimental results is presented below.

Parameter Efficiency Benefiting from the uni-
fied classifier, plugin-tuning can further reduce
task-specific parameters required by parameter-
efficient tuning on all tasks, and its effect is



Task/Method LoRA BitFit Adapter
Ori → Plugin-tuning Ori → Plugin-tuning Ori → Plugin-tuning

NER F1 91.22 → 91.22 (↑0.00) 91.17 → 91.05 (↓ 0.12) 91.13 → 91.34((↑0.21)
Param 44.3k → 36.9k (↓15%) 161k → 153k (↓4%) 127k → 120k (↓5%)

CHK F1 95.58 → 96.34 (↑1.95) 93.25→94.48(↑1.23) 96.10 → 96.89 (↑0.79)
Param 61.4k → 36.9k (↓29%) 172k → 153k (↓10%) 138k → 120k (↓13%)

POS Acc. 96.84 → 97.42 (↑0.58) 97.03 → 97.57 (↑0.54) 97.51 → 97.54 (↑0.03)
Param 72.2k → 36.9k (↓49%) 189k → 153k (↓18%) 156k → 120k (↓23%)

SA Acc. 93.89 → 94.15 (↑0.16) 94.04 → 94.03 (↓0.01) 94.95 → 94.56 (↓0.39)
Param 38.4k → 36.9k (↓4%) 156k → 153k (↓1%) 121k → 120k (↓1%)

NLI Acc. 85.45 → 85.46 (↑0.01) 84.61 → 84.53 (↓0.08) 86.26 → 86.36 ((↑0.10)
Param 39.2k → 36.9k (↓6%) 156k → 153k (↓1%) 122K → 119K (↓2%)

QC Acc. 92.20 → 92.80 (↑0.60) 91.80 → 92.20 (↑0.40) 92.80 → 93.20 (↑0.40)
Param 73.0k → 36.9k (↓49%) 190k → 153k (↓19%) 156k → 120k (↓23%)

Table 2: Main Results for six classification tasks. We report F1 score for Chunking and NER, accuracy for POS,
SA, NLI and QC. Higher is better for these metrics. Param means the number of task-specific parameters; k stands
for thousand. Lower is more efficient for the Param. We compare the performance and parameters on the Original
baseline and the baseline with Plugin-tuning (Ori→ Plugin-tuning). The change in performance and the percentage
of reduced parameters are calculated. Items marked in red indicate that plugin-tuning boosts its performance or
efficiency.

particularly significant on tasks with many labels.
For tasks with more than 40 labels such as POS,
plugin-tuning can reduce the number of parameters
by up to 49%. For the theoretical worst case, on
the sentiment classification task with only two
labels and the NLI task with three labels, the
advantage of our method is not significant, the
percentage of parameter reduction is at least 1%.
At current stage, plugin-tuning is more suitable for
scenarios where the number of labels is large. As
parameter-efficient tuning develops, the amount of
task-specific parameters required will be further
reduced, and the advantages of plugin-tuning will
gradually become more pronounced.

Overall Performance In addition to the ef-
ficiency of the parameters, plugin-tuning also
achieves performance improvements on most tasks,
and this improvement is mainly seen on the token-
level classification task. The most significant
improvement is in the chunking task, with an
average of 1 point improvement on the three
datasets. We speculate that this is because the
unified classifier reuses the parameters of the pre-
trained model, and the gap between its training
target and the pre-trained task is small, so it can
benefit from the rich knowledge hidden in the
pre-trained model. Token-level tasks with many
categories and a high degree of detail benefit more
significantly from them. For the sentence-level
classification task, there are both gains and losses

in performance after applying plugin-tuning, but
the overall impact on performance is not significant.
We found that neither performance gains nor
performance drops were significant on tasks with
large amounts of data. We conjecture that this
is because neither the task-specific classifier nor
the unified classifier is a dominant factor for
performance when the data is large.

Comparison with Fine-tuning We selected the
best performance among all plugin-tuning results
to compare with standard fine-tuning. The
results are shown in Table 3. Although the
overall performance is inferior to fine-tuning, the
difference between plugin-tuning and fine-tuning
has been negligible. Since number of parameters of
plugin-tuning is only 0.01% of fine-tuning, plugin-
tuning can be used as an efficient and effective
alternative to fine-tuning.

Model POS NER CHK SA NLI QC

Fine-tuning 97.69 91.45 97.03 94.72 87.60 93.20

Plugin-tuning 97.42 91.34 96.89 94.56 86.36 93.20

Table 3: Comparison of standard fine-tuning and plugin-
tuning.

Analysis of Different Tasks and Models Our
method is most useful for Adapter and LoRA, and
is not stable on BitFit. However, the differences in
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Figure 3: Time cost of redeployment. We take the log
value to better show the results.

parameter-efficient methods are not as significant
as the impact of the differences between tasks.
From a task perspective, BitFit is unstable and
performs poorly on larger datasets. Adapter and
LoRA achieve similar and better performance on
most tasks, but LoRA requires a smaller number of
parameters and is therefore more efficient.

4.5 Efficiency Advantage

In this section, we study the difference in the
efficiency of different parameter-efficient methods
on deployment. We focus on redeployment, i.e.,
when a new task arrives, we want to release the
resources of the old model and deploy a model that
can execute the new task. Redeployment is suitable
for scenarios where computational resources are
tight. In online environments, the tasks from users
arrive in the stream, and these tasks are diverse and
hardly the same. The wide variety of tasks makes
models need to be redeployed frequently, and in
time-sensitive systems like search engines, the time
of redeployment is part of the consideration.

To simulate the online setting, we construct
the task streams by randomly sampling 30 to 300
samples from six tasks and show the time cost for
switching tasks, the redeployment strategy is used
at the arrival of each task.

To show the disadvantage of the task-specific
classifier, we use plugin-tuning based on LoRA,
which replaces the task-specific classifier with a
unified one. For a fair comparison, we set the
task-specific parameters of each baseline to 36864
(note that LoRA need additional parameters for the
classifier).

The trend of time cost is shown in Figure 3. We
take the log value to better show the results.

Although the parameters are the same scale, we

find plugin-Classifier takes an additional 50% of
time to reload the task-specific classifier (It will be
longer on tasks with more labels), it demonstrates
the efficiency of the unified classifier. These results
can show the efficiency advantages of plugin-
tuning over other parameter-efficient methods.

4.6 Analysis of Label Word Searching

Although the efficiency and performance of plugin-
tuning have been verified by previous experiments,
another part of plugin-tuning, the label word, still
needs to be further analyzed. In this section,
we show the necessity of label word searching
and discuss the sample efficiency of our proposed
algorithm 1.

4.6.1 Effectiveness Study
There are many ways to select a label word, it is
still a question whether our method can select the
right label words. In our view, a suitable label
word needs to have at least no negative impact on
the model and be easy to obtain. Therefore, in
this section, we compare three different label word
construction methods. (1) Each label word is a
handcraft,designed by Human. the human-created
label word sets are shown in Appendix. (2) Each
label word is a VirtualToken in the vocabulary, the
embedding of special token is randomly initialized.
(3) Each label word is selected by our proposed
AutoSearch algorithm.

We apply plugin-tuning to LoRA and test the
performance of the three label word construction
methods on different tasks based on the same
parameter settings. The experimental results are
shown in Table 4. When using VirtualToken,
the performance drops significantly for tasks with
many labels (CoNLL-NER), indicating that the
random vector is hard for a model to fit. The results
of Human shows that human intuition may be the
same as the pre-trained model, which explains the
good performance SST-2. However, on the token
classification task, the human-created label word
may not be consistent with the task goal, leading
to bad results on CoNLL-NER. Our proposed
AutoSearch can effectively leverage the knowledge
of pre-trained models for downstream tasks, thus it
outperforms other methods on all tasks.

4.6.2 Sample Efficiency
Our proposed label word search algorithm requires
some labeled data to find the suitable label word. A
concern here is how much data it needs to find such



Method SST-2 CoNLL-NER
AutoSearch 94.15 91.22
VirtualToken 93.80 90.07

Handcraft 94.03 90.09

Table 4: Comparison of label word searching methods.
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Figure 4: Performance variation of the NER task on the
CoNLL03 when using different numbers of samples for
searching label word.

label words. The sample efficiency is important
since traversing the entire dataset can be time-
consuming. Therefore, we select [100, 500, 1000,
5000, 10000] data uniformly from the train set, and
search the label words in these subsets to verity
the sample efficiency. The results in Figure 4 show
that the 1000 samples are enough for achieving
comparable performance. This indicates that our
algorithm is data efficient.

5 Related Work

5.1 Pre-trained Language Model

Large-scale pre-trained language models, which
pre-trained on a huge amount of data with self-
supervised objectives, have greatly improved the
performance of various downstream tasks (Qiu
et al., 2020). Fine-tuning the pre-trained language
model such as BERT (Devlin et al., 2019), roberta
(Liu et al., 2019), and T5 (Liu et al., 2019)
achieves state-of-art performance on various tasks.
Increasing the number of PLM parameters is one
of the intuitive ways to enhance its performance,
thus leading to the creation of many giant models
(Brown et al., 2020). But it is inconvenient to fine-
tuning these models and apply fine-tuned models
because of the large-scale parameters. They are
also not conducive to community distribution and
sharing. In this work, we explore the parameter-

efficient tuning, which makes the deployment of
PLMs feasible in many industrial scenarios.

5.2 Parameter-efficient Learning

Parameter-efficient learning, is proposed to solve
the problem caused by PLMs’ large-scale pa-
rameters. Unlike traditional methods such as
distillation (Sanh et al., 2019), pruning (Michel
et al., 2019) and quantization (Shen et al., 2020)
that directly reduce the parameters of the model
itself, parameter-efficient methods only fine-tune
a small portion of the model parameters while
keeping the rest untouched or learn external
modules for new task. The rationale behind these
methods can be related to the intrinsic dimension
(Li et al., 2018; Aghajanyan et al., 2020), which
states that PLM are often overparameterized and
only need to learn a good solution in a small
parameter space. Or prompt-tuning (Liu et al.,
2021a), which originated from GPT-3, by entering
special text to let the frozen PLM perform the target
task. Recently, Ding et al. (2022) proposed to call
these methods delta-tuning and analyzed it from
a control theory perspective. Many attempts have
been made to find the which part of parameters
is efficient to learn, such as adapter (Houlsby
et al., 2019), prefix-tuning(Li and Liang, 2021), and
LoRA(Hu et al., 2022). In this work, we boost the
efficiency of parameter-efficient tuning by avoiding
the problem caused by task-specific classifier.

6 Conclusion

In this work, we propose plugin-tuning, a unified
framework to improve parameter-efficient tuning
for both token and sentence classification tasks.
We use a unified classifier to handle different
classification tasks by re-formulating them to a
unified language modeling task, where no trainable
parameter is required for training the classifier. To
select the proper label words, we also propose a
principled algorithm that is applicable to both token
and sentence classification tasks. In this way, the
efficiency of all the parameter-efficient methods
can be largely promoted. The experiments show
that our method achieves comparable performance
against fine-tuned PLMs while further saving up to
49% parameters on top of other parameter-efficient
methods. Future directions might be applying the
unifying strategy into other tasks like text matching
that require specific label spaces.
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A Label Word and Template

In this section, we show the template and label
word in Table 5, Table 6 and Table 7. These tables
are shown in the next page.



Dataset Template Label Word Set
SST-2 [X] It was ⟨mask⟩. {positive: great, negative: terrible}
MNLI [PREMISE] ? ⟨mask⟩ [HYPOTHESIS] {entailment: Also, contradiction: But, nautral: Yeah}

Table 5: Templates and label words of plugin-tuning for sentence classification

Dataset Label Word Set

CoNLL03
{B-ORG: United, B-MISC: American, B-PER: Paul, I-PER: Smith, B-LOC: France, I-ORG: Inc,
I-MISC: Cup, I-LOC: York}

CoNLL2000
{B-NP: the, B-PP: of, I-NP: and, B-VP: is, I-VP: be, B-SBAR: that, B-ADJP: more,
B-ADVP: also, I-ADVP: much, I-ADJP: lower, I-SBAR: if, I-PP: as, B-PRT: up, B-LST: 7,
B-INTJ: yes, I-INTJ: was, B-CONJP: As, I-CONJP: well, I-PRT: or, B-UCP: wines, I-UCP:}

WSJ

{NNP: Mr, VBZ: is, JJ: first, NN: year, TO: to, VB: be, .: ., CD: million, DT: the,
VBD: said, IN: in, PRP: he, NNS: people, VBP: have, MD: will, VBN: been, POS: "",
JJR: more, ": ", RB: also, ,: „ FW: v, CC: and, WDT: which, (: (, ): ), :: -,
PRP$: his, RBR: less, VBG: going, EX: There, WP: who, WRB: when, $: $,
RP: up, NNPS: Yankees, SYM: /, RBS: most, UH: O, PDT: all, "": "", LS: 3,
JJS: best, WP$: whose, NN|SYM: TV }

Table 6: Label words of plugin-tuning on token classification tasks

Dataset Template LabelWordSet

SST-2 [X] It was ⟨mask⟩. {positive: good, negative: bad}

CoNLL03 -No Template-

{B-LOC:location, I-LOC:place, B-PER:person,

I-PER:human, B-MISC: entity, I-MISC:other,

B-ORG:organization, I-ORG:party},

Table 7: Human-created label words for ablation study
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