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Abstract

Natural language inference aims to predict
whether a premise sentence can infer another
hypothesis sentence. Existing methods typi-
cally have framed the reasoning problem as a
semantic matching task. The both sentences
are encoded and interacted symmetrically and
in parallel. However, in the process of reason-
ing, the role of the two sentences is obviously
different, and the sentence pairs for NLI are
asymmetrical corpora. In this paper, we pro-
pose an asynchronous deep interaction net-
work (ADIN) to complete the task. ADIN is
a neural network structure stacked with mul-
tiple inference sub-layers, and each sub-layer
consists of two local inference modules in an
asymmetrical manner. Different from previous
methods, this model deconstructs the reason-
ing process and implements the asynchronous
and multi-step reasoning. Experiment results
show that ADIN achieves competitive perfor-
mance and outperforms strong baselines on
three popular benchmarks: SNLI, MultiNLI,
and SciTail.

1 Introduction

Natural language inference (NLI) is a pivotal and
fundamental task in natural language understand-
ing and artificial intelligence. The goal of NLI
is to predict whether a premise sentence can in-
fer another hypothesis sentence. As illustrated in
Table 1, logical relationships between the two sen-
tences include entailment (if the premise is true,
then the hypothesis must be true), contradiction
(if the premise is true, then the hypothesis must be
false), and neutral (neither entailment nor contra-
diction).

As a core task, conventional approaches have
studied various aspects of the inference prob-
∗Equal contribution. Alphabetical order of the last name.
†Corresponding author.

Premise: A dog is jumping for a Frisbee in the
snow.
Hypothesis: An animal is playing with a plastic
toy.
Label: Entailment

Premise: He was crying like his mother had just
walloped him.
Hypothesis: He was crying like his mother hit
him with a spoon.
Label: Neutral

Premise: Several men in front of a white build-
ing.
Hypothesis:Several people in front of a gray
building.
Label: contradiction

Table 1: Examples of natural language inference.

lem (MacCartney and Manning, 2008; Heilman
and Smith, 2010). Thanks to the release of the
largest publicly available corpus - the Stanford
Natural Language Inference (SNLI) corpus (Bow-
man et al., 2015), neural network-based models
have also been successfully used for this task
(Parikh et al., 2016; Chen et al., 2016; Tay et al.,
2018; Duan et al., 2018). These methods typically
treat the premise sentence and the hypothesis sen-
tence equally, learn an alignment of sub-phrases in
both sentences symmetrically and in parallel, and
fuse local information for making a global deci-
sion at the sentence level. They all frame the in-
ference problem as a semantic matching task and
ignore the reasoning process.

However, different from a simple semantic
matching task, reasoning should be asynchronous
and fully interpretable (Yi et al., 2018). Moreover,
the sentence pairs for NLI are asymmetrical cor-
pora, i.e., I(a, b) 6= I(b, a). Considering the first
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Figure 1: The overall view of our model. The left part is the main framework of this work. The dashed lines
refer to the copy operation. The asynchronous inference layer is stacked with N inference sub-layers. In the first
sub-layer of the asynchronous inference layer, the input is from the representation layer. Subsequently, the input of
sub-layers come from the previous sub-layers. The right part is the detailed structure of the local inference module,
taking ĥbj as an example.

example in Table 1, the premise sentence can infer
the hypothesis sentence, however, the hypothesis
sentence can’t infer the premise sentence. The in-
ference process intuitively needs to consider the
relationship between two sentences in sequential
order. According to the actual inference process,
we argue that the model should first get the in-
ferential information to model the hypothesis sen-
tence, based on the premise sentence, and then
model premise sentence, based on the new repre-
sentation for hypothesis sentence.

In this paper, we propose an asynchronous deep
interaction network (ADIN) to achieve the reason-
ing. This model is stacked with multiple inference
sub-layers to implement the multi-step reasoning,
and each sub-layer consists of two local inference
modules in an asymmetrical manner to simulate
the asynchronous and interpretable reasoning pro-
cess. In a local inference module, we update the
sentence representation by using the local infer-
ence information, based on the attention of the
other sentence. Lastly, we combine the inference
information between the two sentences to make a
global decision.

To demonstrate the effectiveness of our model,
we evaluate it on three popular benchmarks:
SNLI, MultiNLI, and SciTail. The experimen-
tal results on these three data sets reveal that our
method achieves competitive performance.

The main contributions of this work can be sum-
marized as follows:

• We break the matching architecture that inter-

acts with the information between two sen-
tences for alignment, and propose an asyn-
chronous deep interaction network to achieve
the asynchronous and multi-step reasoning.

• We deconstruct the reasoning process be-
tween the two sentences, and the process can
be analyzed step-by-step.

• The experimental results on three highly
competitive benchmark datasets demonstrate
that our model can achieve better perfor-
mance than other strong baselines.

2 Approach

We define the natural language inference as a
classification task that predicts the relation y ∈
Y for a given pair of sentences, where Y ={
entailment, contradiction, neutral

}
. In this

work, we propose an asynchronous deep interac-
tion network (ADIN) to complete this task. The
overall architecture of the model is illustrated on
the left part of Figure 1.

Our sentence inference architecture, ADIN , is
composed of the following three components: (1)
information representation layer converts the two
sentences into semantic representations; (2) asyn-
chronous inference layer produces new represen-
tations for the two sentences, based on the infer-
ence information; and (3) interaction and predic-
tion layer determines the overall inference rela-
tionship between a premise and hypothesis.



2.1 Local Inference Module
Given two natural sentences a and b, Ha =
{hai |hai ∈ Rk, i = 1, 2, ...,m} and Hb =
{hbj |hbj ∈ Rk, j = 1, 2, ..., n} denote their k-
dimensional representations respectively , where
m, n denote the length of two sentences. Here,
we implement a general reasoning process where
the module captures the relevance between the two
sentences, then incorporates the inferential infor-
mation to the new representation for sentence b,
based on the sentence a. First, we compute a co-
attention matrix E ∈ Rm×n to capture the rel-
evance between the two sentences, each element
Ei,j ∈ R indicates the relevance between the i-th
word of sentence a and the j-th word of b. For-
mally, the co-attention matrix could be computed
as:

Ei,j = PT tanh(W(hai � hbj )), (1)

where W ∈ Rs×k, P ∈ Rs, and � denotes the
element-wise production operation. Then, we get
a-guided attentive vectors for sentence b:

ebj = softmax(E:,j), (2)

h′bj = Ha · ebj , (3)

In order to enhance the interaction further, we
combine the original vector and a-guided attentive
vector for sentence b. More formally:

h′′bj = [hbj ;h′bj ;hbj − h′bj ;hbj � h′bj ], (4)

h̃bj = ReLU(Wbjh′′bj + bbj ), (5)

where [·; ·; ·; ·] refers to the concatenation opera-
tion. In Equation 4, we first calculate the differ-
ence and the element-wise product for (hbj ,h

′
bj
).

We get the new representation containing a-guided
inferential information for sentence b:

H̃b = (h̃b1 , h̃b2 , ..., h̃bn), (6)

Ĥb = LayerNorm(H̃b), (7)

Where LayerNorm(.) is layer normalization (Ba
et al., 2016). The result Ĥb is a 2D-tensor that has
the same shape as Hb, and we refer to the whole
inferential module as:

InferentialModule(Ha,Hb), (8)

As described, the inferential module can capture
the relevance between the two sentences, incorpo-
rate the inferential information to the new repre-
sentation for sentence b, based on the sentence a.

2.2 Information Representation Layer

The information representation layer converts
each word or phrase in the sentences into a vec-
tor representation and constructs the representa-
tion matrix for the sentences. We combine the
multi-level features as the sentence representation.
Each token is represented as a vector by using the
pre-trained word embedding such as GloVe (Pen-
nington et al., 2014), word2Vec (Mikolov et al.,
2013), and fasttext (Joulin et al., 2016). It can also
incorporate more syntactical and lexical informa-
tion into the feature vector.

For ADIN, we use a concatenation of word
embedding, character embedding, and syntactical
features as the sentence representation. The word
embedding is obtained by mapping token to high
dimensional vector space by pre-trained word vec-
tor (300D Glove 840B), and the word embedding
is updated during training. Character-level em-
bedding could alleviate out-of-vocabulary (OOV)
problems and capture helpful morphological infor-
mation. As in (Kim et al., 2016; Lee et al., 2016),
we filter the character embedding with 1D convo-
lution kernel. The character convolutional feature
maps are then max pooled over the time dimension
for each token to obtain a vector.

As in (Chen et al., 2018), the syntactical fea-
tures consist of one-hot part-of-speech (POS) tag-
ging feature and binary exact match (EM) feature.
For one sentence, the EM value is activated if the
same word is found in the other sentence.

Next, ADIN adopts bidirectional Long Short-
Term Memory network (Bi-LSTM) (Graves and
Schmidhuber, 2005) to model the internal tempo-
ral interaction on both directions of the sentences.
Consider a premise sentence p and a hypothesis
sentence q, we have got their multi-level features
representation. Suppose the length of p and q are
m and n respectively. These multi-level features
representation are then passed to a Bi-LSTM en-
coder to obtain the context-dependent hidden state
matrix, i.e, Hp = {hpi |hpi ∈ Rd, i = 1, 2, ...,m},
and Hq = {hqj |hqj ∈ Rd, j = 1, 2, ..., n}, where
d is the dimension of Bi-LSTM’s hidden state.

2.3 Asynchronous Inference Layer

Recently, along with the development of deep
learning methods, some neural attention-based
models have also been successfully used for NLI
(Rocktäschel et al., 2015; Parikh et al., 2016; Duan
et al., 2018). However, these methods typically



frame the inference problem as a semantic match-
ing task and ignore the reasoning process, where
the premise sentence and the hypothesis sentence
are encoded and interacted symmetrically and in
parallel.

In this paper, we utilize the local inference
module to deconstruct the reasoning process and
achieve the asynchronous and multi-step reason-
ing for NLI. To model the multi-step reasoning
habit, this model is stacked with N inference sub-
layers to capture step-by-step the logic relation-
ship between the two sentences. In the each in-
ference sub-layer , two inferential modules per-
form two asynchronous inference processes re-
spectively.

Concretely, in the t-th inference sub-
layer, given the representations of two
sentences computed in the previous sub-
layer : Vt−1

p = (vt−1p1 , vt−1p2 , ..., vt−1pm ) and
Vt−1
q = (vt−1q1 , vt−1q2 , ..., vt−1qn ), we get the

deeper-level representations:

V̂t
q = InferentialModule(Vt−1

p ,Vt−1
q ), (9)

V̂t
p = InferentialModule(Vt

q,V
t−1
p ), (10)

ṽtqi = [v̂tqi ; vt−1qi ], ṽtpj = [v̂tpj ; vt−1pj ], (11)

vtqi = Bi-LSTM(ṽtqi−1
, ṽtqi , ṽ

t
qi+1

), (12)

vtpj = Bi-LSTM(ṽtpj−1
, ṽtpj , ṽ

t
pj+1

), (13)

where V0
p = Hp, V0

q = Hq, V̂t
p =

(v̂tp1 , v̂
t
p2 , ..., v̂

t
pm), and V̂t

q = (v̂tq1 , v̂
t
q2 , ..., v̂

t
qn). In

an inference sub-layer, we first get the inferential
information to update the representation for hy-
pothesis sentence, based on the premise sentence.
Next, the model incorporates the inferential infor-
mation to the premise sentence, based on the new
representation for hypothesis sentence.

2.4 Interaction and Prediction Layer

To extract a proper representation for each sen-
tence, we apply a mean pooling and a max pooling
on each of them. Formally:

Vmean
p =

m∑
i=1

vNpi
m
, Vmax

p =
m

max
i=1

vNpi , (14)

Vmean
q =

n∑
j=1

vNqj
n
, Vmax

q =
n

max
j=1

vNqj , (15)

Vnew
p = [Vmean

p ;Vmax
p ], Vnew

q = [Vmean
q ;Vmax

q ],

(16)

Train Dev Test Len(P) Len(H)Vocab

SNLI 549K 9.8K 9.8K 14 8 36K
MultiNLI1

392K
9.8K 9.8K 22 11 85K

MultiNLI2 9.8K 9.8K 22 11 85K
SciTail 23.6K 1.3K 2.1K 10 7 -

Table 2: Statistics of datasets: SNLI, MultiNLI, Sci-
Tail. Len(P) and Len(H) refer to the average length of
two sentences. MultiNLI1 and MultiNLI2 indicate the
in-domain and cross-domain datasets.

Then, we aggregate these representations Vnew
p

and Vnew
q for the two sentences p and q in various

ways in the interaction layer and the final feature
vector r for the inference is obtained as follows:

r = [Vnew
p ;Vnew

q ;Vnew
p − Vnew

q ;Vnew
p � Vnew

q ],

(17)

Finally, based on the aggregated feature r, we use
a multi-layer perceptron (MLP) classifier to pre-
dict the label:

v = ReLU(Wrr + br), (18)

ŷ = softmax(Wvv + bv). (19)

where Wr,br,Wv, and bv are trainable parame-
ters. The entire model is trained end-to-end, opti-
mizing the standard multi-class cross-entropy loss
function.

3 Experiments

In this section, we present the evaluation of our
model. We first perform quantitative evaluation,
comparing our model with other strong baselines.
We then conduct some qualitative analyses to un-
derstand how ADIN achieve the asynchronous and
multi-step inference between the premise sentence
and the hypothesis sentence.

3.1 Dataset
We evaluate our model on three popular bench-
marks: the Stanford Natural Language Inference
(SNLI), the MultiGenre NLI Corpus (MultiNLI)
and SciTail. Detailed statistical information of
these datasets is shown in Table 2.

SNLI is a collection of 570k human written sen-
tence pairs based on image captioning, supporting
the task of natural language inference (Bowman
et al., 2015). The labels are composed of entail-
ment, neutral and contradiction. The data splits
are provided in (Bowman et al., 2015).



MultiNLI The corpus (Williams et al., 2017)
is a new dataset for NLI, which contains 433k
sentences pairs. Similar to SNLI, each pair is
labeled with one of the following relationships:
entailment, contradiction, or neutral. We com-
pare on two test sets (matched and mismatched)
which represent in-domain and out-domain perfor-
mance. We use the same data split as provided by
(Williams et al., 2017).

SciTail We also include the newly released Sc-
iTail dataset (Khot et al., 2018) which is a binary
entailment classification task constructed from sci-
ence questions. This is the first entailment set that
is created solely from natural sentences that al-
ready exist independently “in the wild” rather than
sentences authored specifically for the entailment
task. We use the same data split as in (Khot et al.,
2018).

3.2 Models for Comparing
To analyze the effectiveness of our model,
we evaluate some traditional and state-of-the-art
methods as baselines as follows on the above three
data sets:

• DecompAtt (Parikh et al., 2016) is a simple
model that decomposes the problem into par-
allelizable attention computations.

• ESIM (Chen et al., 2016) is a previous state-
of-the-art model for the natural language in-
ference (NLI) task. It is a sequential model
that incorporates the chain LSTM and the tree
LSTM to infer local information between two
sentences.

• BiMPM is proposed in (Wang et al., 2017).
The model combines two sentence encoders
and employs a multi-perspective matching
mechanism in sentence pair modeling tasks.

• DIIN (Gong et al., 2017) is a novel class
of neural network architectures that is able
to achieve high-level understanding of the
sentence pair by hierarchically extracting se-
mantic features from the interaction space.
The model uses word-by-word dimension-
wise alignment tensors to encode the high-
order alignment relationship between sen-
tence pairs.

• DGEM (Khot et al., 2018) is a entailment
model that exploits structure from the hy-
pothesis only. This model shows the value of

structured representation on just the hypothe-
sis for NLI.

• MwAN (Tan et al., 2018) is a multiway atten-
tion network that applies multiple attention
functions to model the matching between a
pair of sentences.

• CAFE (Tay et al., 2018) compares and
compresses alignment pairs using factoriza-
tion layers which leverages the rich history
of standard machine learning literature to
achieve this task.

• AF-DMN (Duan et al., 2018) stacks multiple
computational blocks in its matching layer to
learn the interaction of the sentence pair bet-
ter.

• KIM (Chen et al., 2018) is neural network-
based NLI model that can benefit from ex-
ternal knowledge. The model is capa-
ble of leveraging external knowledge in co-
attention, local inference collection, and in-
ference composition components.

3.3 Experiment Configurations

Hyper-parameters may influence the performance
of a neural network-based model. For all the
three datasets, there are 3 inference sub-layers
in the asynchronous inference Layer. An Adam
(Kingma and Ba, 2014) optimizer with β1 as 0.9
and β2 as 0.999 is used to optimize all trainable
parameters. The initial learning rate is set to 0.001
and is halved when the accuracy on the dev set de-
creases. We also apply dropout (Srivastava et al.,
2014) on the all MLPs to avoid over-fitting, and
the dropout rate is set to 0.2. For preprocessing,
we just tokenize the sentences and lowercase the
tokens.

For initialization, we initialize the word embed-
dings with a 300D Glove 840B (Pennington et al.,
2014), and the out-of- vocabulary (OOV) words
are randomly initialized. All word embeddings
are updated during training. Parameters, including
neural network parameters and OOV word embed-
dings, are initialized with a uniform distribution
between [−0.01, 0.01]. The character embeddings
are randomly initialized with 100D. We crop or
pad each token to have 16 characters. And the 1D
convolution kernel size for character embedding is
5.



Model train test

Single Models

200D DecompAtt 90.5 86.8
(Parikh et al., 2016)
600D ESIM (Chen et al., 2016) 92.6 88.0
BiMPM (Wang et al., 2017) 90.9 87.5
448D DIIN (Gong et al., 2017) 91.2 88.0
300D MwAN (Tan et al., 2018) 94.5 88.3
300D CAFE (Tay et al., 2018) 89.8 88.5
300D AF-DMN 94.5 88.6
(Duan et al., 2018)
KIM (Chen et al., 2018) 94.1 88.6
ADIN (ours) 93.6 88.8

Ensemble Models

600D ESIM (Chen et al., 2016) 93.5 88.6
BiMPM (Wang et al., 2017) 93.2 88.8
448D DIIN (Gong et al., 2017) 92.3 88.9
300D AF-DMN 94.9 89.0
(Duan et al., 2018)
300D CAFE (Tay et al., 2018) 92.5 89.3
ADIN (ours) 95.6 89.5

Table 3: Comparison with previous models on the
SNLI dataset.

3.4 Ensemble

The ensemble strategy is an effective method to
improve model accuracy. Following (Wang et al.,
2017), our ensemble model averages the prob-
ability distributions from five individual single
ADINs, who have exactly identical architectures
but distinguished initializations on parameters.

3.5 Quantitative Results

We use the accuracy to evaluate the performance
of ADIN and other models on datasets SNLI,
MultiNLI, and SciTail.

Table 3 shows the results of different models on
the training and test sets of SNLI. In Table 3, the
first category of methods are single models and the
second category of methods are ensemble models.
We show our model, ADIN, achieves state-of-the-
art performance on the competitive leaderboard.
In this table, KIM is neural network-based NLI
model that can benefit from external knowledge,
and other strong baselines encode and interact the
both sentences symmetrically and in parallel.

Table 4 reports our results on the MultiNLI
dataset. Similar to Table 3, the first category

Model Test Accuracy

Matched Mismatched

Single Models

ESIM 72.3 72.1
(Chen et al., 2016)
DIIN 78.8 77.8
(Gong et al., 2017)
AF-DMN 76.9 76.3
(Duan et al., 2018)
CAFE 78.7 77.9
(Tay et al., 2018)
MwAN 78.5 77.7
(Tan et al., 2018)
ADIN (ours) 78.8 77.9

Ensemble Models

DIIN 80.0 78.7
(Gong et al., 2017)
CAFE 80.2 79.0
(Tay et al., 2018)
MwAN 79.8 79.4
(Tan et al., 2018)
ADIN (ours) 80.3 79.6

Table 4: Comparison with previous models on the
MultiNLI dataset.

of methods are single models and the second
category of methods are ensemble models. On
MultiNLI, we compare on two test sets (matched
and mismatched) which represent in-domain and
out-domain performance. ADIN significantly out-
performs ESIM, a strong baseline on the both test
sets. An ensemble of ADIN models also achieve
competitive result on the MultiNLI dataset.

As illustrated in Table 5, our model outperforms
the baselines and achieves an accuracy of 84.6%
in the test set of the SciTail dataset. As such, em-
pirical results demonstrate the effectiveness of our
proposed ADIN model on the challenging SciTail
dataset.

For the results on all three datasets, we conduct
the students paired t-test. For SNLI and MultiNLI,
the p-value of the significance test between the re-
sults of our model and AF-DMN is less than 0.01
and 0.05, respectively. For SciTail, the p-value
of the significance test between the results of our
model and CAFE is also less than 0.01. These re-
sults further prove the effectiveness of our model.



Model Accuracy

ESIM (Chen et al., 2016) 70.6
DecompAtt (Parikh et al., 2016) 72.3
DGEM (Khot et al., 2018) 77.3
CAFE (Tay et al., 2018) 83.3

ADIN (ours) 84.6

Table 5: Comparison with previous models on the Sci-
Tail dataset.

# layers Dev Test

1 88.6 88.4
2 88.9 88.6
3 89.0 88.8

Table 6: Effect of number of asynchronous inference
layers on the SNLI.

3.6 Model Analysis
To better understand the performance of ADIN,
we analyze the effect of each key component of
the proposed model on the SNLI dateset.

Table 6 shows the performance with a differ-
ent number of asynchronous inference sub-layers.
As we can see, with the number of sub-layers in-
creases from 1 to 3, the performance increases
both on the development set and the test set. As
the level of reasoning deepens, the model captures
more inferential information. Because of compu-
tational cost, we just set the number of sub-layers
as 3 on SNLI and other two datesets.

In Table 7, we show the results of ablation study
on our base model. After removing the Bi-LSTM
in the asynchronous inference Layer, the model
performance decrease by 0.3 percentage points on
the test set. Furthermore, we study the effect
of two inferential modules in one asynchronous
inference sub-layer. Without the first inferen-
tial module, that is, without the reasoning pro-
cess from premise to hypothesis, the model perfor-
mance sharply decreases by 0.8 percentage points.
However, remove the second module and the test
accuracy decreases by 0.5 percentage points. (ex-
changed inference order) indicates that we get the
inferential information to first model the premise
sentence, and then model hypothesis sentence.
The performance of the model is reduced to 88.3%
after exchanging inference order between two sen-
tences. The above three experiments reflect that
the both modules are not equally important for the

Models Dev Test

ADIN (-Bi-LSTM) 88.7 88.5
ADIN (-first inferential module) 88.4 88.0
ADIN (-second inferential module) 88.5 88.3
ADIN (exchanged inference order) 88.6 88.3
ADIN (-char-emb - syntactical fea) 88.5 88.2
ADIN (ours) 89.0 88.8

Table 7: Effect of components on the SNLI.

Premise
(1) A dog is jumping for a Frisbee in the snow.
(2) A dog is jumping for a Frisbee in the snow.
(3) A dog is jumping for a Frisbee in the snow.
(4) A dog is jumping for a Frisbee in the snow.

Hypothesis
(1) An animal is playing with a plastic toy.
(2) An animal is playing with a plastic toy.
(3) An animal is playing with a plastic toy.
(4) An animal is playing with a plastic toy.

Figure 2: Gradient visualization of premise and hy-
pothesis. (1) Gradient scale of Hp,Hq on represen-
tation layer. (2) Gradient scale of V1

p,V
1
q on the

first asynchronous inference sub-layer. (3) Gradient
scale of V2

p,V
2
q on the second asynchronous inference

sub-layer. (4) Gradient scale of V3
p,V

3
q on the third

asynchronous inference sub-layer. Darker color cor-
responds to a higher scale of gradient, and implies a
higher contribution to the final prediction.

inference and the sentence pair for NLI is asym-
metrical corpora. In the last comparative experi-
ment, we explore the role of multi-level features.
We remove character embedding and syntactical
features and just keep word embedding as the rep-
resentation. The test accuracy is reduced to 88.2%.

3.7 Case study

To visually demonstrate the validity of the model,
we do a qualitative study using the first example in
Table 1.

Hp,Hq are the hidden states at the representa-
tion layer of premise sentence and hypothesis sen-
tence, and Vt

p,Vt
q are the hidden states at the t-th

asynchronous inference sub-layer. For a hidden
state hpi of word pi, we can calculate the gradient

scale
∥∥∥ ∂J
∂hpi

∥∥∥2 to show its contribution to the final
prediction, where J is the cross-entropy loss. Fig-
ure 2 gives a visualization of the contribution to
the final prediction of every word. As we can see,
some phrases (like jumping for a Frisbee and play-



ing with a plastic toy) instead of isolated words
(like Frisbee and toy) become more focused af-
ter an asynchronous inference layer. The results
imply that ADIN could capture some higher-level
patterns. As the level of reasoning deepens, the
model captures more inferential information.

4 Related Work

As a long standing problem in NLP research,
natural language inference (or textual entailment
recognition) has been widely investigated for
many years. Conventional works on NLI relies
on handcrafted features such as syntactic infor-
mation, n-gram overlapping and so on (Bowman
et al., 2015; Heilman and Smith, 2010).

Benefiting from the development of deep learn-
ing and the availability of large-scale annotated
datasets (Bowman et al., 2015), neural network-
based models have also been successfully used for
this task. And two categories of neural network-
based models have been developed for this prob-
lem. The first set of models is sentence encoding-
based and aims to find vector representation for
each sentence and classifies the relation by us-
ing the concatenation of two vector representation
(Bowman et al., 2016; Nangia et al., 2017; Mou
et al., 2015). However, this kind of framework ig-
nores the interaction between two sentences.

The other set of models uses the cross-sentence
feature or inter-sentence attention from one sen-
tence to another, and is hence referred to as a
matching-aggregation framework. Parikh et al.
(2016) use attention to decompose the problem
into subproblems that can be solved separately,
thus making it trivially parallelizable. Chen et al.
(2016) propose a state-of-the-art model for the nat-
ural language inference (NLI) task. It is a sequen-
tial model that incorporates the chain LSTM and
the tree LSTM to infer local information between
two sentences. A novel class of neural network
architectures is proposed in (Gong et al., 2017)
that is able to achieve high-level understanding of
the sentence pair by hierarchically extracting se-
mantic features from interaction space. Tan et al.
(2018) propose a multiway attention network that
designs four attention functions to match words
in corresponding sentences, aggregates the match-
ing information from each function, and combines
the information from all functions to obtain the fi-
nal representation. Tay et al. (2018) compare and
compress alignment pairs using factorization lay-

ers which leverages the rich history of standard
machine learning literature to achieve this task.
AF-DMN (Duan et al., 2018) stacks multiple com-
putational blocks in its matching layer to learn
the interaction of the sentence pair better. KIM
(Chen et al., 2018) is capable of leveraging ex-
ternal knowledge in co-attention, local inference
collection, and inference composition components
to improve the performance. These methods all
frame the inference problem as a semantic match-
ing task and ignore the reasoning process.

Different from the above methods, ADIN is
a neural network structure stacked with multiple
asynchronous inference sub-layers, and each sub-
layer consists of two local inference modules in
an asymmetrical manner. This model deconstructs
the reasoning process and implements the asyn-
chronous and multi-step reasoning.

5 Conclusions

In this paper, we propose an asynchronous deep
interaction network (ADIN) for natural language
inference. To simulate human reasoning process,
ADIN is stacked with multiple asynchronous in-
ference sub-layers, and each sub-layer consists of
two inferential modules in an asymmetrical man-
ner. The model deconstructs the reasoning process
and implements the asynchronous and multi-step
reasoning. We evaluate our model on three pop-
ular benchmarks: SNLI, MultiNLI, and SciTail.
The experiment results show that ADIN achieves
competitive performance and outperforms strong
baselines.
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Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv,
and Ming Zhou. 2018. Multiway attention networks
for modeling sentence pairs. In IJCAI, pages 4411–
4417.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018.
Compare, compress and propagate: Enhancing neu-
ral architectures with alignment factorization for
natural language inference. In Proceedings of
EMNLP, pages 1565–1575.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Tor-
ralba, Pushmeet Kohli, and Josh Tenenbaum. 2018.
Neural-symbolic vqa: Disentangling reasoning from
vision and language understanding. In Advances
in Neural Information Processing Systems, pages
1039–1050.

—


