
Transferring from Formal Newswire Domain with Hypernet
for Twitter POS Tagging

Tao Gui1, Qi Zhang1, Jingjing Gong1,
Minlong Peng1, Di Liang1, Keyu Ding2, Xuanjing Huang1

1Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
2iFlytek Co., Ltd.

1{tgui16,qz,jjgong15,mlpeng16,xjhuang}@fudan.edu.cn
2kyding@iflytek.com

Abstract

Part-of-Speech (POS) tagging for Twitter has
received considerable attention in recent years.
Because most POS tagging methods are based
on supervised models, they usually require
a large amount of labeled data for train-
ing. However, the existing labeled datasets
for Twitter are much smaller than those for
newswire text. Hence, to help POS tagging
for Twitter, most domain adaptation methods
try to leverage newswire datasets by learning
the shared features between the two domains.
However, from a linguistic perspective, Twit-
ter users not only tend to mimic the formal
expressions of traditional media, like news, but
they also appear to be developing linguistically
informal styles. Therefore, POS tagging for
the formal Twitter context can be learned
together with the newswire dataset, while POS
tagging for the informal Twitter context should
be learned separately. To achieve this task,
in this work, we propose a hypernetwork-
based method to generate different parameters
to separately model contexts with different
expression styles. Experimental results on
three different datasets show that our approach
achieves better performance than state-of-the-
art methods in most cases.

1 Introduction

With the continuous growth of online communica-
tion, hundreds of millions of online conversational
messages have become important resources for
various applications such as real-time event detec-
tion (Sakaki et al., 2010), stock prediction (Bollen
et al., 2011) and public health analysis (Wilson
and Brownstein, 2009). Because these appli-
cations need to process natural language text,
POS tagging, which is one of the fundamental
natural language processing tasks, has become
one of the basic pre-processing components of
such applications. The performance of POS

RT @jamstik : Lol :) there is more than one way to
start living a greener life.

As their varied strategies suggest , there is more than one
way to respond to a disaster.

Wall Street Journal Section of Penn Treebank

Treebank-3 (LDC1999T42) /07/WSJ_0799.POS

Figure 1: Examples of WSJ and tweets. Segments
with red highlights can be regarded as the similar
expressions. Segments with blue highlights correspond
to expressions that cannot be learned from WSJ.

tagging may highly impact the results of these
applications.

Most of the POS tagging methods that can
achieve state-of-the-art performance are based on
supervised learning algorithms (Gimpel et al.,
2011). Although these methods can achieve
good performance for in-domain data, their per-
formance usually drops quickly when processing
data from a domain that is different from that of
the training data (Caruana and Niculescu-Mizil,
2006). To achieve better performance, we usually
need to manually label a large amount of in-
domain data. However, the task of construct-
ing labeled data is time-consuming and tedious.
Currently, various methods have been proposed
to solve this problem using out-of-domain data,
including domain adaptation (Daumé III, 2009;
Gui et al., 2017), multi-task learning (Ben-David
et al., 2007), and dual learning (Chandrasekaran
et al., 2014).

Most existing methods aim to learn the shared
representations or parameters, which can reduce
the classification or regression model errors of
each task/domain. However, these methods usu-
ally ignore the fact that each domain has domain-
specific features that should not be shared. From

U Haaahh

get

appli-
cation

to

him

VBZ

N N

T O

PRP

ti

ti�1

ti�2

ti+2

ti+1xi+1

xi+2

xi

xi�1

xi�2

Main LSTM layerHyper LSTM layerMLP layerCharacter-level
CNN layer

Prediction layerInput layer

~wi

~ci

~wi

~ci

~wi

~ci

~wi

~ci

~wi

~ci

a
p
p
l
i
c
a
t
i
o
n

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Wy
x

Wy
h

Wy
x

Wy
h

Figure 2: Model architecture of the proposed dynamic conversion neural networks.

the language characteristics, in spite of the ex-
pressions that are similar to the newswire text,
Twitter has some informal expressions that cannot
be shared, as shown in Figure 1. Hu et al.
(2013) investigated the characteristics of language
on Twitter and found that Twitter users not only
tended to mimic the linguistic practices of tradi-
tional media, like news, they also appeared to be
developing linguistically unique styles. We also
believe that the tweets simply follow the standard
language rules, and at some point eventually devi-
ate from those. Thus, tweets are a combination of
formal expressions and informal expressions with
conversions between different expression styles.

Based on the above observations, we believe
that annotated sentences of newswire text can
be selectively used to help tag contextual seg-
ments of tweets, especially for formal expressions.
To achieve this goal, in this work we adopt
bidirectional long short-term memory (bi-LSTM)
networks (Schuster and Paliwal, 1997), which
have been successfully used for various sequence
tagging problems. However, different from previ-
ous methods, the formal expressions and informal
expressions in a sentence should be separately
modeled. Inspired by recent work on dynamic
parameter prediction (Ha et al., 2016), we pro-
pose a method to generate the context-specific
parameters of the bi-LSTM based on different
styles of context for POS tagging. We evaluated
our models on three different corpora. The
results demonstrated that the proposed method can
benefit from annotated newswire text data and

achieve competitive performance. In addition, we
visualized the context distributions and the change
of parameters. The visualization results verified
the fact that different contexts produce different
parameters for POS tagging.

The main contributions of the paper can be
summarized as follows.

1. We study problems in the segment modeling
method to apply domain adaptation to the
POS tagging task. Based on the observations
from a linguistic perspective, we found that
there are many shared expressions between
the newswire and tweets, and some expres-
sions cannot be shared.

2. A novel neural network architecture based on
the bi-LSTM was proposed to perform the
task. Different parameters were applied in
different contexts.

3. Experimental results demonstrated that the
proposed method can benefit from different
domains. We also conducted qualitative and
quantitative analyses to show why our model
can achieve better performance.

2 Approach

Twitter is responsible for colorful linguistic ex-
pressions, and full of the conversions between for-
mal expressions and informal expressions. To ad-
dress this problem, we propose the Dynamic Con-
version Neural Networks (DCNN), which can dy-
namically generate different parameters for POS

tagging based on different contexts as shown in
Figure 2. Our model mainly consists of four
parts: (1) a CNN layer for extracting word
representations xi, (2) an MLP layer for producing
low-dimensional context representations ti, (3) a
hyper LSTM layer for generating the weights W
of a main LSTM, and (4) the main LSTM layer
with dynamic parameters for POS tagging.

The architecture of the main network is the
same with any sequence labeling model, which
learns to map the word representations to the
corresponding labels. However, the parameters of
the main network can be modified according to
our purpose. we use a low-dimensional context
distribution vector ti as the input of the hyper
LSTM to generate the weights of the main LSTM.
Thus, the weights of the main LSTM will be
subject to a change in context vector. Therefore,
the main LSTM can predict the POS tag based on
the different parameters.

Ha et al. (2016) also proposed a HyperRNN
network, in which the hyper net is influenced
by the main net. This is inconsistent with our
motivation. Different from (Ha et al., 2016), to
make the parameters of the main LSTM totally
controlled by the context distribution, we changed
the architecture by cutting off the data path from
the main LSTM to the hyper LSTM. This method
can prevent the hidden states of the main LSTM
from influencing the hyper LSTM. In addition,
we add an extra layer of learning the context
representations based on features returned by a
CNN.

2.1 Word and Context Representations

Out-of-vocabulary words are frequently used in
Twitter. Moreover, new symbols, abbreviations,
and words are constantly being created. These
make word representations difficult to address.
Thus, robust methods should be used to extract the
morphological and shape information from words.

Inspired by (Santos and Zadrozny, 2014), we
adopted character-level convolutional neural net-
works (CNN layer) to tackle this problem, which
can take all of the characters of the word into
consideration and output important orthographic
features (Santos and Zadrozny, 2014). Suppose
that we are given the sentence X = {w1, w2, . . . }
with vocabulary V of words. We use multiple
filters with varying widths to obtain the ortho-
graphic feature vector ~ci for word wi. Then, the

orthographic feature vector ~ci is concatenated to
the word embedding ~wi to form word representa-
tion xi as the input of the main LSTM. Utilizing
a bi-LSTM to model sentences, the model can
extract the sequential relations and contextual
information.

The context is a fixed window of words around
target word. The context representations are
learned by the MLP later. To do this, we apply
a fully connected neural network, which takes
sequential word representations in a fixed window
as input to generate a low-dimensional vector ti as
follows:

ti =
softmax(MLP [xi−r...xi−1 ⊕ xi ⊕ xi+1...xi+r]),

(1)
where [· ⊕ ·] represents concatenation operation.
r represents the length from central word xi to
the edge of the window. MLP is the multilayer
perceptrons function, which transfers the context
matrix to a low-dimensional vector. We apply
MLP to every window of contexts. softmax
denotes the softmax function that converts the
context vector into a probability distribution. The
goal is to learn an MLP layer that, given sequential
word representations, estimates a distribution over
the contexts.

2.2 Adaptive Weight Generation

The identical weights at each time step will limit
the expressiveness of recurrent neural network
(RNN) (Ha et al., 2016). To overcome the
limitation, our model uses a small network (hyper
network) taking low-dimensional context repre-
sentations as inputs to dynamically generate the
parameters of a large network (main network) for
POS tagging. Different with (Ha et al., 2016), at
every time step, the hyper LSTM only takes the
context representation ti as an input and generates
the hidden state ĥi as an output. This hidden
state ĥi is used to generate the weights for the
main LSTM at the same time step. The hyper
LSTM and main LSTM are jointly trained with
backpropagation and gradient descent. Next, we
will give a more formal description of the weight
generation.

The hyper LSTM is a standard LSTM (Hochre-
iter and Schmidhuber, 1997), which takes context
vectors as inputs and outputs hidden states. The

hyper LSTM is defined as follows:
ĝi
îi
f̂i
ôi

 =

Wĝ
t ,W

ĝ

ĥ

Wî
t,Wî

ĥ

Wf̂
t ,W

f̂

ĥ
Wô

t ,Wô
ĥ

 •
[

ti
ĥi−1

]
+

b̂ĝ

b̂î

b̂f̂

b̂ô

ĉi = φ(ĝi)� σ(̂ii) + ĉi−1 � σ(̂fi)
ĥi = σ(ôi)� φ (ĉi) ,

(2)

where φ denotes the tanh function, and σ is
the sigmoid function. � and • represent the
Hadamard product and matrix product, respec-
tively. We assume that ŷ is one of {ĝ, î, f̂ , ô}.
The hyper LSTM has Nĥ hidden units, and Nt is
the dimensionality of ti. Then, Wŷ

t ∈ RNĥ×Nt ,

Wŷ

ĥ
∈ RNĥ×Nĥ , b̂ŷ ∈ RNĥ are the parameters

of the hyper LSTM and stay invariable during one
sentential sequence.

Inspired by (Ha et al., 2016), we adopted a
weight scaling vector d which is a linear projec-
tion of ĥi. d is used to linearly scale each row of
the weight matrix in the standard LSTM. Because
the context vector t is produced by the different
contexts at each time step, the hidden state hi and
di will change corresponding to ti. Thus, the main
LSTM can be modified as follows:

dy
i,x

dy
i,h

dy
i,b

 =

MLP y
x (ĥi)

MLP y
h (ĥi)

MLP y
b (ĥi)

yi =

[
dy
i,x ⊗Wy

x,d
y
i,h ⊗Wy

h

]
•
[

xi
hi−1

]
+ dy

i,b ⊗ by

ci =φ(gi)� σ(ii) + ci−1 � σ(fi)
hi =σ(oi)� φ (ci) ,

(3)

where⊗ represents the element-wise product with
broadcasting. y is one of {g, i, f, o}. Generally,
Nĥ and Nt are much smaller than Nh and Nx,
respectively. Thus, the size of the parameters in
the hyper LSTM is hundreds of times less than that
of the standard LSTM.

According to the above functions, if the model
is given contexts with different styles, it will
generate different parameters for all kinds of gates
in the main LSTM. Then, the outputs of the main
LSTM are used to predict the POS tags of the
central words with the cross entropy loss:

LPOS = −
∑
i

zi ∗ log ẑi, (4)

Dataset #Train #Dev #Test
RIT-Twitter 10652 2242 2291
NPSChat 40497 - 4500
ARK-Twitter 26594 - 7707

Table 1: The statistics of the datasets used in our
experiments, where # represents the number of tokens
in datasets.

where zi is the one-hot vector of the POS tagging
label corresponding to xi. ẑi is the output of the
top softmax layer: ẑi = softmax(MLP (hi)).

3 Experimental Setup

In this section, we will first detail the datasets
we used. Then, we will describe several baseline
methods, including a number of classic taggers
and a series of deep learning sequence labeling
methods.

3.1 Datasets

Following (Derczynski et al., 2013), we use
RIT-Twitter (Ritter et al., 2011) as our main
dataset. The RIT-Twitter was split into training,
development and evaluation sets (RIT-Train, RIT-
Dev, RIT-Test). The splitting method was shown
in (Derczynski et al., 2013). In order to verify
the validity of our model, we also tested it on
two more datasets, NPSChat (Forsythand and
Martell, 2007), and ARK-Twitter (Gimpel et al.,
2011) using standard splits. The tag-sets of the
RIT-Twitter and NPSChat are PTB-like, while
that of the ARK-Twitter is specific. In order to
use WSJ labeled data in experiments on ARK-
Twitter, we performed the mapping from PTB tag-
sets to ARK tag-sets, according to the PTB POS
Tagging Guidelines (Santorini, 1990) and ARK
Guidelines1. The mapping proceeded from fine to
coarse.

For pretraining the word embedding, we con-
structed a dataset containing 30 million tweets,
from Twitter using its API. We introduced a
newswire dataset containing 1173K tokens as
the written language dataset, namely the Wall
Street Journal (WSJ) from the Penn TreeBank
v3 (Marcus et al., 1993). During training, we
mixed each of RIT-Twitter, NPSChat and ARK-
Twitter with WSJ into three kinds of training data.

The detailed data statistics of the above datasets
used in this work are listed in Table 1.

1http://www.ark.cs.cmu.edu/TweetNLP/

3.2 Competitor Methods

We applied several classic and state-of-the-art
methods for comparison. In addition, we used a
series of deep learning sequence labeling methods
as baselines for comparison, as follows:

Stanford POS Tagger is a widely used part-
of-speech taggers described in (Toutanova et al.,
2003). It demonstrates the broad use of features
and appropriate model regularization, which pro-
duces a superior level of performance (97.24%).
In this work, we trained it using two different
sets: sections 0-18 of the WSJ (Stanford-WSJ)
and a mixed corpus of WSJ, IRC, and Twitter
(Stanford-MIX).

T-POS (Ritter et al., 2011) adopts hierarchi-
cal clustering and Brown clustering methods to
address the issue of OOV words and lexical
variations. It also uses conditional random fields
and other standard sets of features to perform
the task. In this work, we trained it using three
different sets: the WSJ (T-POS-WSJ), RIT-Train
(T-POS-RIT) and a mixed corpus of WSJ, IRC,
and RIT-Train (T-POS-MIX).

GATE Tagger (Derczynski et al., 2013) uses
an approach that combines the available taggers
for different tagsets. The tagger adopts a vote-
constrained bootstrapping method with unlabeled
data and assigns prior probabilities to handle of
unknown words and slang.

ARK Tagger (Owoputi et al., 2013) is a system
that reports the best accuracy on ARK-Twitter. It
uses unsupervised word clustering and a variety of
lexical features.

TPANN (Gui et al., 2017) applies adversarial
networks and autoencoder to model labeled out-
of-domain data, unlabeled in-domain data and
labeled in-domain data and achieved the best
performance on RIT-Twitter.

Bidirectional LSTM (Bi-LSTM) (Wang et al.,
2015) has been widely used in a variety of
sequence labeling tasks. In this work, we also
evaluated it as a baseline.

Bi-HyperLSTM (Ha et al., 2016) was used
as a substitute for the standard Bi-LSTM. What
makes the Bi-HyperLSTM model different from
the proposed model is that we used context
distribution to generate the parameters of main
LSTM.

3.3 Initialization and Hyperparameter

The word embeddings for all the models were
initialized with the word2vec tool (Mikolov et al.,
2013) on 30 million tweets. The other parameters
excluding the word embeddings, such as the
parameters in LSTM and MLP, were initialized by
randomly sampling from a uniform distribution in
[-0.05, 0.05].

The dimensionality of the word embedding was
set at 200. The dimensionality for the randomly
initialized character embedding was set at 25.
We adopted a hyper LSTM with 160 hidden
neurons to produce the weights of each gates of
the main LSTM with 250 hidden neurons. The
dimensionality of the context vector was set at 10.

Our DCNN could be trained end-to-end
with backpropagation and gradient-based
optimization was performed using the Adam
update rule (Kingma and Ba, 2014) with learning
rate 0.0001.

4 Results and Analysis

In this section, we will report the experimental
results and a detailed analysis of the results for the
three different datasets.

4.1 Evaluation on RIT-Twitter

The RIT-Twitter was introduced in (Ritter et al.,
2011). This dataset uses a tagset based on the Penn
Treebank tagset with several Twitter-specific tags:
retweets, @usernames, hashtags, and urls.

Table 2 lists the results of our method compared
with other methods on this dataset. The first
part shows the results of the classic methods.
From the result of Stanford-WSJ, we can see
that although it can achieve a superior level
of performance (97.24%) on the WSJ dataset,
the accuracy drops significantly to 73.37% when
applied to the Twitter dataset. If we add some in-
domain data to the training set, the Stanford-MIX
can improve by 10% compared to the Stanford-
WSJ. The same phenomenon can be observed
from T-POS tagger. If we apply more features, like
clustering, bootstrapping and lexical features, the
T-POS, GATE tagger and ARK tagger can achieve
better performances. Although TPANN achieve
accuracy of 90.92%, it incorporates additional a
large amount of in-domain unlabeled data. Our
method is more competitive because of the use of
much fewer data sets.

Methods Training Set RIT-Test RIT-Dev
Stanford-WSJ (Toutanova et al., 2003) - 73.37%
Stanford-MIX - 83.14%
T-POS-WSJ (Ritter et al., 2011) 81.30%
T-POS-RIT 84.55% 84.83%
T-POS-MIX 88.30% -
GATE Tagger (Derczynski et al., 2013) 88.69% 89.37%
ARK Tagger (Owoputi et al., 2013) 90.40% -
TPANN (Gui et al., 2017) 90.92% 91.08%
Bi-LSTM

RIT-Train

89.48% 89.30%
Bi-LSTM∗ 89.31% 90.37%
Bi-HyperLSTM 88.65% 89.16%
Bi-HyperLSTM∗ 88.30% 89.56%
DCNN 89.87% 90.50%
Bi-LSTM

WSJ + RIT-Train

90.09% 90.37%
Bi-LSTM∗ 90.31% 90.81%
Bi-HyperLSTM 90.57% 90.41%
Bi-HyperLSTM∗ 90.44% 90.54%
DCNN 91.18% 91.17%

Table 2: Token level accuracies of different methods on RIT-Test and RIT-Dev. The first part demonstrates the
results of classic methods. The second part demonstrates a series of deep learning methods trained on RIT-train.
The third part demonstrates the same deep learning methods train on the mixed dataset of RIT-train and WSJ.
DCNN refers to our dynamic conversion neural network. Other models are described in the Section 3.2. The
symbol ∗ represents the model concatenates the context vectors with the word representations as inputs.

The second part shows the results of the deep
learning methods trained on the RIT-Train dataset.
We can see that if the sequence labeling methods
are just trained on the RIT-Train dataset, their
accuracies can exceed those of most conventional
taggers. Thus, the deep learning methods are
competitive and avoid feature engineering. Com-
pared with other models, the DCNN achieved best
performance among the models just trained on
RIT-Train dataset.

The third part shows the results of the deep
learning methods trained on the mixed dataset of
the RIT-Train and WSJ. As observed, when we
added the WSJ data to train the models, all of them
could obtain different degrees of improvement.
Moreover, our model could make better use of the
out-of-domain data and obtained the best result.
Compared with the ARK tagger, which achieved
the previous best result in conventional methods,
our model was almost 0.78% better. The error
reduction rate was more than 8%. Our model also
outperformed the TPANN, which incorporated
additional unlabeled in-domain data.

From the perspective of utilizing a low-
dimensional context vector, we provided the

same information (word information and context
information) for all of the deep learning models
as shown in Table 2. However, except for the
DCNN, the other models were incapable of
utilizing the context information. Most of the
models could not obtain obvious improvement.
In contrast, our DCNN could make better use
of the context information to generate more
appropriate parameters for POS tagging. Next, we
will analyze the behavior how the DCNN changes
parameters when encountering different context
vectors.

Intuitively, contexts with different language
expression styles should be transformed into dif-
ferent vectors. Figure 3 visualizes the context
distribution. Subfigure (a) shows the context
vector extracted from WSJ. We can see that the
formal expressions are mainly concentrated in the
middle of the four dimensions. This phenomenon
can be observed in the subfigure (b), where the
formal expressions in the Twitter are concentrated
in the middle of the same dimensions and the
informal expressions are concentrated in another
three dimensions. Notice that in our experimental
setup, the dimensionality of the context vector is

RT
@
N
ic
kS
ill
y :

Fu
n !
RT

@
Ja
ck
FM
D
FW
:

Pu
t
on

yo
ur

B
oo
gi
e

Sh
oe
s

an
d

G
et

D
ow
n

To
ni
gh
t

w
ith K
C
an
d

Th
e

Su
ns
hi
nr

B
an
d .

#D
al
la
s

#c
on
ce
rts ht
tp :/ …

1

3

5

7

9

C
om
po
un
d

yi
el
ds

as
su
m
e

re
in
ve
st
m
en
t of

di
vi
de
nd
s

an
d

th
at th
e

cu
rr
en
t

yi
el
d

co
nt
in
ue
s

fo
r a

ye
ar .

1

3

5

7

9

(a) (b)

Figure 3: Visualization of context distribution. The left sentence comes from WSJ, and the right one comes from
Twitter.

I ⇠ II III 6⇠ II

� � Compound yields assume reinvestment of dividends and that the current yield
continues for a year. (WSJ Formal)
�� Very grateful for another Monday and a new week full of endless possibilities !
Go World! (Twitter Formal)
�� RT@NickSilly : Fun ! RT @JackFMDFW : Put on your Boogie Shoes and Get
Down Tonight with KC and The Sunshine Band . #Dallas #concerts http :/ ... (Twitter
Informal)

|W o
h3

� W o
h2

|
<latexit sha1_base64="2mMUyyPUswMNO51PSkXKCa7YHpo=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEN5akFnRZcOOygn1AW0uSTtvQNAnJRChtN+7ErT/gVj9I/AP9C++MU1CL6IQkZ86958zce+3Qc2NuGK8pbWFxaXklvZpZW9/Y3Mpu71TjIIkcVnECL4jqthUzz/VZhbvcY/UwYtbQ9ljNHpyLeO2GRbEb+Fd8FLLW0Or5btd1LE5UO7s3qV0H7XG/fTI9VqgwnbSzOSNvyKXPA1OBHNQqB9kXNNFBAAcJhmDwwQl7sBDT04AJAyFxLYyJiwi5Ms4wRYa0CWUxyrCIHdC3R7uGYn3aC89Yqh06xaM3IqWOQ9IElBcRFqfpMp5IZ8H+5j2WnuJuI/rbymtILEef2L90s8z/6kQtHF2cyRpcqimUjKjOUS6J7Iq4uf6lKk4OIXECdygeEXakctZnXWpiWbvorSXjbzJTsGLvqNwE7+KWNGDz5zjnQbWQN428eVnMlYpq1Gns4wBHNM9TlHCBMirkPcYjnvCsNbVb7U67/0zVUkqzi29Le/gARJOX/g==</latexit><latexit sha1_base64="2mMUyyPUswMNO51PSkXKCa7YHpo=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEN5akFnRZcOOygn1AW0uSTtvQNAnJRChtN+7ErT/gVj9I/AP9C++MU1CL6IQkZ86958zce+3Qc2NuGK8pbWFxaXklvZpZW9/Y3Mpu71TjIIkcVnECL4jqthUzz/VZhbvcY/UwYtbQ9ljNHpyLeO2GRbEb+Fd8FLLW0Or5btd1LE5UO7s3qV0H7XG/fTI9VqgwnbSzOSNvyKXPA1OBHNQqB9kXNNFBAAcJhmDwwQl7sBDT04AJAyFxLYyJiwi5Ms4wRYa0CWUxyrCIHdC3R7uGYn3aC89Yqh06xaM3IqWOQ9IElBcRFqfpMp5IZ8H+5j2WnuJuI/rbymtILEef2L90s8z/6kQtHF2cyRpcqimUjKjOUS6J7Iq4uf6lKk4OIXECdygeEXakctZnXWpiWbvorSXjbzJTsGLvqNwE7+KWNGDz5zjnQbWQN428eVnMlYpq1Gns4wBHNM9TlHCBMirkPcYjnvCsNbVb7U67/0zVUkqzi29Le/gARJOX/g==</latexit><latexit sha1_base64="2mMUyyPUswMNO51PSkXKCa7YHpo=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEN5akFnRZcOOygn1AW0uSTtvQNAnJRChtN+7ErT/gVj9I/AP9C++MU1CL6IQkZ86958zce+3Qc2NuGK8pbWFxaXklvZpZW9/Y3Mpu71TjIIkcVnECL4jqthUzz/VZhbvcY/UwYtbQ9ljNHpyLeO2GRbEb+Fd8FLLW0Or5btd1LE5UO7s3qV0H7XG/fTI9VqgwnbSzOSNvyKXPA1OBHNQqB9kXNNFBAAcJhmDwwQl7sBDT04AJAyFxLYyJiwi5Ms4wRYa0CWUxyrCIHdC3R7uGYn3aC89Yqh06xaM3IqWOQ9IElBcRFqfpMp5IZ8H+5j2WnuJuI/rbymtILEef2L90s8z/6kQtHF2cyRpcqimUjKjOUS6J7Iq4uf6lKk4OIXECdygeEXakctZnXWpiWbvorSXjbzJTsGLvqNwE7+KWNGDz5zjnQbWQN428eVnMlYpq1Gns4wBHNM9TlHCBMirkPcYjnvCsNbVb7U67/0zVUkqzi29Le/gARJOX/g==</latexit><latexit sha1_base64="2mMUyyPUswMNO51PSkXKCa7YHpo=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEN5akFnRZcOOygn1AW0uSTtvQNAnJRChtN+7ErT/gVj9I/AP9C++MU1CL6IQkZ86958zce+3Qc2NuGK8pbWFxaXklvZpZW9/Y3Mpu71TjIIkcVnECL4jqthUzz/VZhbvcY/UwYtbQ9ljNHpyLeO2GRbEb+Fd8FLLW0Or5btd1LE5UO7s3qV0H7XG/fTI9VqgwnbSzOSNvyKXPA1OBHNQqB9kXNNFBAAcJhmDwwQl7sBDT04AJAyFxLYyJiwi5Ms4wRYa0CWUxyrCIHdC3R7uGYn3aC89Yqh06xaM3IqWOQ9IElBcRFqfpMp5IZ8H+5j2WnuJuI/rbymtILEef2L90s8z/6kQtHF2cyRpcqimUjKjOUS6J7Iq4uf6lKk4OIXECdygeEXakctZnXWpiWbvorSXjbzJTsGLvqNwE7+KWNGDz5zjnQbWQN428eVnMlYpq1Gns4wBHNM9TlHCBMirkPcYjnvCsNbVb7U67/0zVUkqzi29Le/gARJOX/g==</latexit>

|W o
h1

� W o
h2

|
<latexit sha1_base64="Dhkhsb36Zqc/wBp3zzN7JtY2R3A=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEN5akFHRZcOOygn2ArSVJp21omoRkIpS2G3fi1h9wqx8k/oH+hXfGKahFdEKSM+fec2buvU7kewk3zdeMtrC4tLySXc2trW9sbunbO7UkTGOXVd3QD+OGYyfM9wJW5R73WSOKmT10fFZ3BmciXr9hceKFwSUfRaw1tHuB1/VcmxPV1vcm9euwPe63remxQsXppK3nzYIplzEPLAXyUKsS6i9oooMQLlIMwRCAE/ZhI6HnChZMRMS1MCYuJuTJOMMUOdKmlMUowyZ2QN8e7a4UG9BeeCZS7dIpPr0xKQ0ckiakvJiwOM2Q8VQ6C/Y377H0FHcb0d9RXkNiOfrE/qWbZf5XJ2rh6OJU1uBRTZFkRHWuckllV8TNjS9VcXKIiBO4Q/GYsCuVsz4bUpPI2kVvbRl/k5mCFXtX5aZ4F7ekAVs/xzkPasWCZRasi1K+XFKjzmIfBziieZ6gjHNUUCXvMR7xhGetqd1qd9r9Z6qWUZpdfFvawwc/u5f8</latexit><latexit sha1_base64="Dhkhsb36Zqc/wBp3zzN7JtY2R3A=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEN5akFHRZcOOygn2ArSVJp21omoRkIpS2G3fi1h9wqx8k/oH+hXfGKahFdEKSM+fec2buvU7kewk3zdeMtrC4tLySXc2trW9sbunbO7UkTGOXVd3QD+OGYyfM9wJW5R73WSOKmT10fFZ3BmciXr9hceKFwSUfRaw1tHuB1/VcmxPV1vcm9euwPe63remxQsXppK3nzYIplzEPLAXyUKsS6i9oooMQLlIMwRCAE/ZhI6HnChZMRMS1MCYuJuTJOMMUOdKmlMUowyZ2QN8e7a4UG9BeeCZS7dIpPr0xKQ0ckiakvJiwOM2Q8VQ6C/Y377H0FHcb0d9RXkNiOfrE/qWbZf5XJ2rh6OJU1uBRTZFkRHWuckllV8TNjS9VcXKIiBO4Q/GYsCuVsz4bUpPI2kVvbRl/k5mCFXtX5aZ4F7ekAVs/xzkPasWCZRasi1K+XFKjzmIfBziieZ6gjHNUUCXvMR7xhGetqd1qd9r9Z6qWUZpdfFvawwc/u5f8</latexit><latexit sha1_base64="Dhkhsb36Zqc/wBp3zzN7JtY2R3A=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEN5akFHRZcOOygn2ArSVJp21omoRkIpS2G3fi1h9wqx8k/oH+hXfGKahFdEKSM+fec2buvU7kewk3zdeMtrC4tLySXc2trW9sbunbO7UkTGOXVd3QD+OGYyfM9wJW5R73WSOKmT10fFZ3BmciXr9hceKFwSUfRaw1tHuB1/VcmxPV1vcm9euwPe63remxQsXppK3nzYIplzEPLAXyUKsS6i9oooMQLlIMwRCAE/ZhI6HnChZMRMS1MCYuJuTJOMMUOdKmlMUowyZ2QN8e7a4UG9BeeCZS7dIpPr0xKQ0ckiakvJiwOM2Q8VQ6C/Y377H0FHcb0d9RXkNiOfrE/qWbZf5XJ2rh6OJU1uBRTZFkRHWuckllV8TNjS9VcXKIiBO4Q/GYsCuVsz4bUpPI2kVvbRl/k5mCFXtX5aZ4F7ekAVs/xzkPasWCZRasi1K+XFKjzmIfBziieZ6gjHNUUCXvMR7xhGetqd1qd9r9Z6qWUZpdfFvawwc/u5f8</latexit><latexit sha1_base64="Dhkhsb36Zqc/wBp3zzN7JtY2R3A=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEN5akFHRZcOOygn2ArSVJp21omoRkIpS2G3fi1h9wqx8k/oH+hXfGKahFdEKSM+fec2buvU7kewk3zdeMtrC4tLySXc2trW9sbunbO7UkTGOXVd3QD+OGYyfM9wJW5R73WSOKmT10fFZ3BmciXr9hceKFwSUfRaw1tHuB1/VcmxPV1vcm9euwPe63remxQsXppK3nzYIplzEPLAXyUKsS6i9oooMQLlIMwRCAE/ZhI6HnChZMRMS1MCYuJuTJOMMUOdKmlMUowyZ2QN8e7a4UG9BeeCZS7dIpPr0xKQ0ckiakvJiwOM2Q8VQ6C/Y377H0FHcb0d9RXkNiOfrE/qWbZf5XJ2rh6OJU1uBRTZFkRHWuckllV8TNjS9VcXKIiBO4Q/GYsCuVsz4bUpPI2kVvbRl/k5mCFXtX5aZ4F7ekAVs/xzkPasWCZRasi1K+XFKjzmIfBziieZ6gjHNUUCXvMR7xhGetqd1qd9r9Z6qWUZpdfFvawwc/u5f8</latexit>

Figure 4: Visualization of the comparison of weight
matrices. We denote the weight matrix of output gate
asW o

h . Each subgraph represents the result of element-
wise subtraction |W o

hi
−W o

hj
|, where |·|means absolute

value, i and j are the sequence numbers of sentences. If
the two sentences have a similar expression style, then
the absolute value would be close to zero represented
by white color. We use i ∼ j to represent it. On
the contrary, We use i 6∼ j to represent the different
expression styles. We only visualize the weights on the
last time step.

set to 10. However, the values of the last three
dimensions are close to zero. Consequently, we set
this hyperparameter to 7 and we achieve a higher
accuracy of 91.27%.

Figure 4 shows how the weight matrix W o
h in

output gate gets changed when the model inputs
different kinds of contexts. Through making a
comparison among the sentences I, II and III. we
can find that although the sentences II and III are
both from Twitter, whereas the sentence I is from
WSJ, If the style of sentence II is close to that of
sentence I, then the model will produce similar
weight values to achieve the task. If the style of
sentence I is different from that of sentence III,
then the model will produce different parameters
more suitable for Twitter-specific sentences. The

Methods Acc.
Forsyth (2007) 90.8%
ARK Tagger 93.4% ± 0.3%
Gui et al. (2017) 94.1%
Bi-LSTM(IRC) 90.3%
Bi-LSTM(WSJ + IRC) 93.2%
DCNN 94.0%

Table 3: Accuracy comparison of different methods on
NPSChat Corpus.

similar phenomena can be found in other gates.

4.2 Evaluation on NPSChat

The NPSChat Corpus (Forsythand and Martell,
2007) is a PTB-POS annotated dataset of Internet
Relay Chat (IRC) room messages from 2006. The
corpus consists of 10,567 posts out of approxi-
mately 500,000 posts gathered from various online
chat services in accordance with their terms of
service. The authors of the corpus made several
decisions during the process that were unique to
the chat domain regarding some abbreviations,
emotions and misspelled words. For example,
LOL and :-) were frequently encountered in the
chat messages. Because these expressions con-
veyed emotion, they were treated as individual
tokens and tagged as interjections (UH).

Table 3 lists the results of different taggers eval-
uated on NPSChat. Our method was tested using
the same setup as the experiments in (Forsyth,
2007). The training part contained 90% of the
data. The testing part contained the remain-
ing 10%. Based on the results, we can see
that our method could achieve the best accu-
racy (94.0%), which was significantly better than
90.8% (Forsyth, 2007). They trained the tagger
on a mix of several corpora tagged with the Penn
Treebank tag set. Our method also outperformed

Methods Acc.
Gimpel et al. (2011) 89.17%
Gui et al. (2017) 92.8%
ARK Tagger 93.2%
ARK Tagger† 92.38%
Bi-LSTM(OCT27) 90.59%
Bi-LSTM(WSJ + IRC + OCT27) 91.57%
DCNN(WSJ + IRC + OCT27) 92.42%

Table 4: Accuracy comparison of different methods on
ARK-Twitter Corpus. The symbol † represents ARK
Tagger trained without tagdicts and namelists.

the ARK tagger, which applies various external
corpus and features, e.g., Brown clustering, PTB,
Freebase lists of celebrities, and video games.

4.3 Evaluation on ARK-Twitter

The ARK-Twitter that contains 34K tokens uses
a novel tagset. The training set (OCT27) is
provided in (Gimpel et al., 2011). It is a dataset
of POS-tagged tweets consisting almost entirely of
tweets sampled from one particular day (October
27, 2010). However, the test set was introduced
in (Owoputi et al., 2013), and contains 574 tweets
(DAILY547). The DAILY547 consists of one
random English tweet from every day between
January 1, 2011 and June 30, 2012. Thus,
the distribution between the training set and test
set may be slightly different. For example, a
substantial fraction of the messages in the training
data are about a basketball game that occurred on
that day.

The results of the ARK tagger and TweetNLP
Tagger in Table 4 are reported in (Owoputi et al.,
2013). We can see that our method could
significantly outperform the TweetNLP Tagger.
However, our method was worse than the ARK
tagger. By analyzing the incorrect results, we
found that 20.3% of the errors occurred between
nouns and proper nouns. Because our model does
not incorporate any knowledge of proper nouns, it
is difficult for it to recognize proper nouns from
datasets. As reported in (Owoputi et al., 2013), if
ARK-tagger does not add tag dictionary features
and name list features, its performance will drop
to 92.38%, which is lower than that of the DCNN.
Thus, our model is also competitive when lacking
of knowledge.

5 Related Work

At a very early time, Schmidhuber (1992) began to
explore the concept of fast weights, in which one
network can produce context-dependent weight
changes for a second network (Schmidhuber,
1992, 1993). Moreover, they provided the theo-
retical possibility of a recurrent network version.
Recently, numerous studies have been conducted
in this field (Moczulski et al., 2015; Fernando
et al., 2016). De Brabandere et al. (2016)
introduced a new framework called the dynamic
filter network where the filters in the CNN are
generated dynamically. Ha et al. (2016) explored
the use of this approach in recurrent networks. Our
work uses a different mechanism to generate pa-
rameters, which can make the parameters subject
to a change in context representations. we cut off
the data path from the main LSTM to the hyper
LSTM. This method can prevent the hidden states
of the main LSTM from influencing the hyper
LSTM.

Recently, deep learning has achieved promising
results on POS tagging. Santos and Zadrozny
(2014) used a CNN to construct a character-based
model for English (PTB) and Portuguese. Wang
et al. (2015) used the bi-LSTM on WSJ and
reported a state-of-the-art performance. However,
because of a lack of training data and an uncon-
strained writing style, these models encountered
resistance in the implementation process on Twit-
ter. In this work, we focused on the linguistic
correlation between Twitter and newswire and
took the linguistic characteristics into consid-
eration. To selectively utilize out-of-domain
data, we used a low-dimensional context vector
to generate different parameters for text with
different expression styles and obtained better
results.

6 Conclusion

In this work, we study the problem of incor-
porating labeled newswire texts for Twitter POS
tagging tasks. From a linguistic perspective, we
find that Twitter users not only tend to mimic the
formal expressions of traditional media, like news,
but they also appear to be developing linguistically
informal styles. Hence, we predict that labeled
data from the newswire should selectively be
used to help tag contextual segments of tweets.
To achieve this task, we introduce a novel deep
neural network architecture that can dynamically

generate different parameters based on different
expression styles for POS tagging. To evaluate
the performance of the proposed method, we
compare the method with previous state-of-the-art
methods on three different datasets. Experimental
results demonstrate that the proposed method can
achieve better performance in most cases. We
also visualize some parameters learned for the
proposed method to demonstrate the motivation
for this work.

Acknowledgments

The authors wish to thank the anonymous
reviewers for their helpful comments. This
work was partially funded by China National
Key R&D Program (No.2017YFB1002104),
National Natural Science Foundation of China
(No.61751201, 61532011, 61473092, and
61472088), and STCSM (No.16JC1420401,
17JC1420200).

References
Shai Ben-David, John Blitzer, Koby Crammer, and

Fernando Pereira. 2007. Analysis of representations
for domain adaptation. In NIPS, pages 137–144.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8.

Rich Caruana and Alexandru Niculescu-Mizil. 2006.
An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd ICML, pages
161–168. ACM.

Bharath Chandrasekaran, Han-Gyol Yi, and W Todd
Maddox. 2014. Dual-learning systems during
speech category learning. Psychonomic bulletin &
review, 21(2):488.

Hal Daumé III. 2009. Frustratingly easy domain
adaptation. arXiv preprint arXiv:0907.1815.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc
Van Gool. 2016. Dynamic filter networks. In NIPS.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging for
all: Overcoming sparse and noisy data. In RANLP,
pages 198–206.

Chrisantha Fernando, Dylan Banarse, Malcolm
Reynolds, Frederic Besse, David Pfau, Max
Jaderberg, Marc Lanctot, and Daan Wierstra. 2016.
Convolution by evolution: Differentiable pattern
producing networks. In GECCO, pages 109–116.
ACM.

Eric N Forsyth. 2007. Improving automated lexical and
discourse analysis of online chat dialog.

Eric N Forsythand and Craig H Martell. 2007. Lexical
and discourse analysis of online chat dialog. In
ICSC 2007., pages 19–26. IEEE.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In ACL: Human Language Technologies: short
papers-Volume 2, pages 42–47. Association for
Computational Linguistics.

Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng,
and Xuanjing Huang. 2017. Part-of-speech tagging
for twitter with adversarial neural networks. In
EMNLP.

David Ha, Andrew Dai, and Quoc Le. 2016. Hypernet-
works. In ICLR 2016.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yuheng Hu, Kartik Talamadupula, Subbarao Kamb-
hampati, et al. 2013. Dude, srsly?: The surprisingly
formal nature of twitter’s language. In ICWSM.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In NIPS, pages 3111–3119.

Marcin Moczulski, Misha Denil, Jeremy Apple-
yard, and Nando de Freitas. 2015. Acdc: A
structured efficient linear layer. arXiv preprint
arXiv:1511.05946.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. ACL.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimental
study. In EMNLP.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings
of WWW 2010, pages 851–860. ACM.

Beatrice Santorini. 1990. Part-of-speech tagging
guidelines for the penn treebank project (3rd
revision). Technical Reports (CIS), page 570.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In ICML-14, pages 1818–1826.

Jürgen Schmidhuber. 1992. Learning to control
fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–
139.

Jürgen Schmidhuber. 1993. A self-referential weight
matrix. In Proceedings of the International Con-
ference on Artificial Neural Networks, Amsterdam,
pages 446–451.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings NAACL, pages 173–180.

Peilu Wang, Yao Qian, Frank K Soong, Lei He,
and Hai Zhao. 2015. Part-of-speech tagging
with bidirectional long short-term memory recurrent
neural network. arXiv preprint arXiv:1510.06168.

Kumanan Wilson and John S Brownstein. 2009. Early
detection of disease outbreaks using the internet.
CMAJ, 180(8):829–831.

