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Abstract
In this work, we explore the way to quickly
adjust an existing named entity recognition
(NER) system to make it capable of recogniz-
ing entity types not defined in the system. As
an illustrative example, consider the case that a
NER system has been built to recognize person
and organization names, and now it requires to
additionally recognize job titles. Such a situa-
tion is common in the industrial areas, where
the entity types required to recognize vary a lot
in different products and keep changing. To
avoid laborious data labeling and achieve fast
adaptation, we propose to adjust the existing
NER system using the previously labeled data
and entity lexicons of the newly introduced
entity types. We formulate such a task as
a partially supervised learning problem and
accordingly propose an effective algorithm to
solve the problem. Comprehensive experi-
mental studies on several public NER datasets
validate the effectiveness of our method.

1 Introduction

Named Entity Recognition (NER) is a type of
information extraction task that seeks to identify
entity names from unstructured text and categorize
them into a predefined list of types. It plays an
important role in many downstream tasks such
as knowledge base construction (Riedel et al.,
2013; Shen et al., 2012), machine translation
(Babych and Hartley, 2003), and search (Zhu
et al., 2005), etc. In this field, the supervised
methods, ranging from the conventional graph
models (McCallum et al., 2000; Malouf, 2002;
McCallum and Li, 2003; Settles, 2004) to the
dominant deep neural methods (Collobert et al.,
2011; Huang et al., 2015; Lample et al., 2016;
Gridach, 2017; Liu et al., 2018; Zhang and Yang,
2018; Jiang et al., 2019; Gui et al., 2019), have
achieved great success. However, these supervised
methods usually require large scale labeled data to

achieve good performance, while the annotation of
NER data is often laborious and time-consuming.

In the real world, there are many, or more
strictly speaking, infinite numbers of entity types.
It is impossible for a NER system to cover all
entity types (Ling and Weld, 2012; Mai et al.,
2018). Therefore, in the industrial area, it
often happens that some entity types required to
recognize by the clients are not defined in the
previously designed NER system. In such a case,
we need to quickly adjust the existing NER system
to make it capable of recognizing the new entity
types required by the clients. In this literature,
we refer to the existing NER system as the source
system, and refer to the adjusted system as the
target system. The NER tasks defined in the two
systems are referred to as the source task and the
target task, respectively. The goal of this work
is quickly transferring from the source task to the
target task.

Suppose the new entity types defined in the
target task are classified into class K (e.g, GPE
and non-GPE are all annotated as the location
type) in the source task. A common practice to
build the target system is sampling some examples
from the training data of the source task and asking
the annotators to re-annotate words of class K
in these examples. Then, it finetunes the model
pretrained on the source task (with the output
layer being replaced) using the re-annotated data
to perform the target task. However, it is worth
noting that the NER labels of words are context-
dependent. To re-annotate the words of class K,
the annotators need to read the whole sentence
rather than the fragmental words of class K. This
is still laborious and time-consuming, making
it not an ideal choice when fast adaptation is
required or the required entity types by the clients
vary a lot and keep changing.

In this work, we propose to transfer from the



Bobick works at Google as a program support specialist.

PER U U ORG U U U U JOB

uORGPERps LLLL ++=

PER O O ORG O O JOBJOBJOB

PER O O ORG O O O O O

Predict

Input

Source 
Label

Partial 
Label

Partially Supervised Learning

Data labeling using the Job Title lexicon

Figure 1: Applying of our method to an illustrative
sentence for additionally introducing Job Title in the
target task. Here, words in blue color constitute a job
title. “Partial Label” corresponds to the automatically
obtained partial labels using the job title lexicon, where
“U” means the label of the word is unknown (can be
“O” or “JOB”). “Predict” denotes the expected labels
predicted by our model.

source task to the target task using only the labeled
data of the source task and entity lexicons of
the newly introduced entity types. Note that the
collection of entity lexicons is often much easier
than data annotation. For example, we can ask
the language experts familiar with NER to provide
some common mentions of the new entity types,
or we can collect some confident mentions of the
types from the internet to construct the lexicons.
In some cases, we can even ask the clients of the
target system to provide the lexicons, and usually,
they are more willing to do so than annotate data.

To perform the transfer task using the entity
lexicons, we formulate the task as a partially
supervised learning problem. Figure 1 depicts the
general process of our method, where the target
task needs to additionally recognize job titles,
which are annotated as the Other (O) class in the
source task. Specifically, for the job title type, an
entity lexicon of the type is collected. The lexicon
is used to automatically re-annotate the training
words of the Other class in the source task (“O” of
the “Source Label” in Figure 1), obtaining some
labeled data of the new entity type (“JOB” of the
“Partial Label” in Figure 1). The rest words of the
Other class of the source task not being annotated
by the lexicons form the unlabeled data (“U” of
the “Partial Label” in Figure 1). Note that, the
unlabeled data contains both words of the new
entity types and words not belonging to any entity
type in the target task, and there is no labeled data
for the Other class in the target task. Based on the
obtained labeled and unlabeled data, a multi-class
classifier is trained to perform the target task using
a partially supervised (PS) learning algorithm. In
this classifier, the constituted words of an entity

Ts, Tt the source, target task
ns the number of classes defined in Ts

nt the number of new entity types defined in Tt

ei, i ≤ ns the i-th predefined entity type in Ts

ens+j the j-th new entity type defined in Tt

Lj the lexicon of ens+j

Ds, Dt the labeled, partially labeled data for Ts and Tt

Dt
i the obtained labeled data of class i in Dt

Dt
u the unlabeled data in Dt

πi the ratio of class i data in Dt

π′
ns+j the ratio of class (ns + j) data in Dt

u

Table 1: Some important notations used throughout this
work.

mention correspond to the same class label without
distinction of their positions in the mention, and
words not belonging to any entity type are grouped
into a single class (“O” of “Predict” in Figure 1).

The contribution of this work is threefold: 1)
We explore fast transferring from a source NER
system (task) to a target NER system (task). This
setting has a wide range of applications in the real
world but has been rarely studied. 2) We propose
to perform the task using only labeled data of
the source task and entity lexicons of the newly
introduced entity types, avoiding laborious and
time-consuming data labeling. 3) We formulate
the task as a partially supervised learning problem
and accordingly propose an effective algorithm to
address it.

2 Approach

2.1 Task Definition
In the setting of this work, there is a source and
a target NER system, in which a source and a
target NER task, Ts and Tt, are defined. For
Ts, a labeled dataset, Ds, is available, in which
ns classes are defined (each class corresponds to
an entity type or the Other class). Compared
with Ts, the target task, Tt, needs to additionally
recognize some new entity types. Without loss of
generality, we assume that the newly introduced
nt entity types all belong to class K in the source
task. For an intuitive understanding, consider
introducing the two entity types, Government
Organization and Company, which are all defined
as the Organization type in the source task. In this
case, the Organization type defined in the source
class is the class K in the source task, while the
Government Organization and Company are two
sub-classes of class K. In this work, we present
a way to perform Tt using only Ds and the entity
lexicons of the new entity types. Table 1 lists some
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Labeled Data Dt1 · · · Di 6=O · · · Dtns
Dtns+1 · · · Dtns+nt

7

Unlabeled Data 7 Dtu

Table 2: Obtained labeled and unlabeled data for each class in the target task. The labeled data of each predefined
entity type is copied from the training data of the source task, while the labeled data of each new entity type is
automatically obtained using the lexicons. Note that, there is no labeled data for class K of the source task. Thus,
a fully supervised learning algorithm is not applicable to train the classifier.

important notations used throughout this work for
convenient reference.

2.2 Label Assignment

We apply the normal multi-label assignment
mechanism for performing Tt, instead of the
prevalent BIO or BIOES mechanism. That is, the
constituted words of a mention of the entity type
ei are all classified to class i without distinction
of their positions in the mention. This is because
the labeled words by the lexicons may not cover
all the constituted words of an entity mention,
which means that we cannot distinguish the type,
B (beginning), I (internal), or E (end), the words
labeled by the lexicons belong to.

2.3 Method Overview

Based on the above label assignment mechanism,
we train a (ns+nt)-class classifier to perform the
target task, Tt. In the classifier, the ns entity types
predefined in Ts are denoted as ei, i = 1, · · · , ns
and mapped to class 1, · · · , ns, respectively. The
nt new entity types introduced in Tt are denoted
as ens+j , j = 1, · · · , nt and mapped to class ns +
j, j = 1, · · · , nt, respectively. The challenge for
training the classifier is that in Ds, words of the
newly introduced nt entity types are all classified
to the same class K in the source task.

For training the classifier, we construct a par-
tially labeled dataset Dt from Ds using the lexi-
cons of the newly introduced entity types. Specif-
ically, let Dti ⊆ Dt denote the labeled data of
class i in Dt. Dti , i 6= K is constructed using
words of class i in Ds. While for obtaining the
labeled data of a new entity type ej , we use its
corresponding entity lexicon Lj to scan words of
class K in Ds and find out some confident words
of the entity type to construct labeled data Dtns+j

of class ns + j. This process applies nt times
to obtain the labeled data of the nt new entity
types. The rest words of class K in Ds not being
selected by the lexicons form the unlabeled data
set Dtu ⊆ Dt in the target task, which contains

both words of the new entity types (the lexicon
cannot cover all its corresponding entities in the
data) and words not belonging to any of the newly
introduced entity types.

Table 2 lists the available labeled and unlabeled
data for each class in the target task after the above
process. It is worth noting from the table that
there is no labeled data for class K in the target
task. This means that it is impossible to train
the classifier using a normal supervised learning
algorithm. To address this challenge, we introduce
a novel partially supervised learning algorithm to
train the classifier as described in §2.6.

2.4 Obtain the Partially Labeled Data using
the Entity Lexicons

In this section, we detail the construction of the
partially labeled dataset Dt for the target task. As
illustrated before, the labeled data Dti , i ≤ ns of
class i can be easily obtained from Ds according
to the data labeling of Ts. Thus, in the following,
we focus on obtaining Dtns+j

, j = 1, · · · , nt and
Dtu using the entity lexicons. Following the idea
of (Peng et al., 2019), we apply the maximum
matching algorithm (Xue, 2003) to obtain words
that match with the lexicon Lj and belong to class
K in Ds to construct Dtns+j

. As summarized in
algo. 1, this algorithm is a greedy search routine
that walks through a sequence of class K words
trying to find the longest string that matches with
an entry of the lexicons. Note that in algo. 1,
lw is intuitively set to 4, and the “for” loop is
broken in step 12 because a mention must not
occur in multiple lexicons, which is guaranteed by
Lj ∩ Lk = ∅ if j 6= k.

2.5 Model Architecture

For a sentence s = [w1, · · · , wl] with l words,
we first get the contextualized representations of
words using the BERT model (Devlin et al., 2019):

h1, · · · ,hl = BERT(w1, · · · , wl). (1)



Algorithm 1 Data Labeling using the Lexicons

1: Input: entity lexicons Lj , for j = 1, · · · , nt
with Lj ∩ Lk = ∅ if j 6= k, a word sequence
s = {w1, · · · , wn} ∈ class K in Ds, and the
maximum mention length lw

2: Result: the partially labeled dataset Dt
3: Initialize: i← 1
4: while i ≤ n do
5: for k ∈ [lw, · · · , 0] do
6: b← false
7: for j ∈ [1, · · · , nt] do
8: if {wi, · · · , wi+k} ∈ Lj then
9: assign {wi, · · · , wi+k} to
Dtns+j

.
10: i← i+ k + 1
11: b← true
12: break
13: if b then
14: break
15: if k == 0 then
16: assign wi to Dtu
17: i← i+ 1

Based on the obtained word representations, we
apply a multi-layer perceptron (MLP), f c, whose
last layer activation function is set to softmax, to
perform label inference:

f c(hi) = MLP(hi). (2)

In the following, we denote f as the classifier, with
f(wi) = f c(hi) being a (ns + nt)-dimensional
probability vector.

2.6 Partially Supervised Learning for Model
Training

In this section, we discuss how to train the
(ns+nt)-class classifier using the partially labeled
dataset Dt. In the following, `(f(w), i) denotes
the classification loss defined on the input-label
pair (w, i), πi denotes the ratio of class i data in
Dt, and

Lij =
1

|Dtj |
∑
w∈Dt

j

`(f(w), i)

denotes the classification loss defined on the
dataset-label pair (Dtj , i).

Theoretical foundation. Suppose the labeled
data of class K is available and denoted as DtK .
Then, we can train the classifier on the normal

fully supervised learning loss, which is defined as
follows:

Lsup =
ns+nt∑
i=1

πiLii. (3)

Here, we assume that the value of πi is known and
will discuss its estimation in the next section.

However, due to the absence of DtK , we cannot
directly obtain the value of LKK and consequently,
cannot obtain Lsup. To address this problem,
we propose a method to estimate LKK using the
available labeled and unlabeled data. Specifically,
based on the unlabeled data Dtu, we can obtain the
loss defined on the dataset-label pair (Dtu,K) as
follows:

LKu =
1

|Dtu|
∑
w∈Dt

u

`(f(w),K).

Note that,Dtu consists of unlabeled data from class
(ns + 1) to class ns + nt and class K. Thus, the
right term of the above equation can be factorized
as follows:

∑nt
j=1

|Dtu(ns + j)|
|Dtu|︸ ︷︷ ︸
π′
ns+j

×
∑

w∈Dt
u(ns+j)

`(f(w),K)

|Dtu(ns + j)|︸ ︷︷ ︸
≈LKns+j

,

where Dtu(ns + j) denotes the class (ns + j) data
inDtu, and π′ns+j

= |Dt
u(ns+j)|
|Dt

u|
denotes the ratio of

class (ns + j) in Dtu. Based on this factorization
and the assumption that the data distribution in
Dtns+j

is close to the data distribution in Dtu(ns +
j), we have that:

LKu ≈
nt∑
j=1

π′ns+jL
K
ns+j

+ π′KLKK .

(4)

By reformulating the approximate equation (4),
we can obtain an approximation of LKK by:

LKK ≈
LKu −

∑nt
j=1 π

′
ns+j
LKns+j

π′K
, (5)

which can be calculated using the unlabeled data
and the labeled data of the new entity types.
In addition, according to the theoretical and
empirical analysis of (du Plessis et al., 2014; Peng
et al., 2019), training over this approximate value
of LKK is expected to be equivalent to training over
its true value if ` is upper-bounded.



Practical loss definition. According to the
above analysis, we implement the classification
loss ` by the mean square error (MSE):

` (f(w), i) =
∑
j 6=i

(f(w)[j])2 + (1− f(w)[i])2,

(6)
where f(w)[i] denotes the i-th dimension value of
f(w). Here, we implement `with the mean square
error instead of the popular cross-entropy loss
because the mean square error is upper-bounded
(by 1), which is critical for the estimation of LKK ,
while the cross-entropy loss is not (the cross-
entropy loss can be infinitely large). The empirical
training loss is defined as follows:

Lps =
ns+nt∑
i 6=K

πiLii

+
πK
π′K

(LKu −
nt∑
j=1

π′ns+jL
K
ns+j)︸ ︷︷ ︸

πKLKK

.
(7)

In addition, following the practice of (Kiryo et al.,
2017; Peng et al., 2019), we constrain:

LKu −
nt∑
j=1

π′ns+jL
K
ns+j > 0, (8)

during the minimization of Lps. An intuitive
understanding of this constrain is that the loss for
class (K) should be non-negative.

Class ratio estimation. To obtain the value of
Lps, it is necessary to know the value of the class
ratio πi. Here, we present our method to estimate
πi. For i ≤ ns, πi is estimated by:

πi ← |Dti |/|Dt|, i = 1, · · · , ns,

since class i data is fully labeled in Dt. For
estimating πns+j and π′ns+j

, j = 1, · · · , nt + 1,
we apply an iteration strategy. In particular, we
first initialized πns+j and π′ns+j

for j ≤ nt
by |Dtns+j

|/|Dt|, and initialize πK and π′K by
|Dtu|/|Dt| and 1, respectively. Based on this, we
train the classifier f and then re-estimate πns+j

and π′ns+j
using the trained classifier as follows:

πns+j ←
1

|Dt|
∑
w∈Dt

f(w)[ns + j],

π′ns+j ←
1

|Dtu|
∑
w∈Dt

u

f(w)[ns + j],
(9)

This process iterates several times to get the
final estimations of πns+j and π′ns+j

. Note that,
according to the theoretical analysis of Kato et al.
(2018), πns+j and π′ns+j

will converge to fixed
values.

2.7 Lexicon Adaptation
It has been proved to be an effective technique
to improve the model performance by iteratively
enriching the lexicons in a self-training style (Peng
et al., 2019). We follow this technique in our
method. In particular, we use the trained classifier
to perform label prediction for words of Dtu.
Among the predicted entity mentions of the new
entity types, we add the frequently occurred ones
into the lexicons, which are then used for data
labeling in the next iteration. This process repeats
several times until the lexicons do not change.

2.8 Label Inference
For a query sentence, it first performs label
prediction for the constituted words using the
trained classifier f as follows:

y(w) = argmax
i

f(w)[i]. (10)

The consecutive words being predicted to be of the
same class form an entity mention. For example,
for the sentence s = {w1, w2, w3, w4, w5}, if
the predicted label sequence is {1, 1, 3, 4, 4} with
ns = 2 and nt = 1, then {w1, w2} and {w3} are
treated as entity mentions of type e1 and type e3,
respectively.

3 Related Work

NER is a well studied natural language processing
(NLP) task. Once a time, many NER systems
are knowledge-based (Nadeau et al., 2006; Gerner
et al., 2010; Liu et al., 2015). They do not require
annotated training data but heavily rely on back-
ground knowledge (rules) and lexicon resources.
They work well when the lexicon is exhaustive,
but fail when the lexicon is incomplete. Precision
is generally high for these systems, but recall is
often low due to incomplete lexicons.

Current state-of-the-art NER systems are
mainly based on annotated data and machine
learning approaches. The lexicons introduced in
some of these systems are mainly for extracting
some external features (Liu et al., 2015; Agerri
and Rigau, 2016; Chiu and Nichols, 2016). This
field has been previously dominated by the graph



Dataset #Sent #Word Entity Types in Class K %Mention by Type
CoNLL03 (en) 14,041 203,621 PER;LOC .283/.304
CoNLL02 (sp) 8,323 264,715 PER;LOC .231/.262
MUC-7 3,405 76,987 PER;LOC .275/.306
Twitter 4,000 64,439 PER;LOC .363/.334
OntoNotes4.0 (cn) 15,700 49,190 GPE;LOC .371/.069

Table 3: Task information built on five public NER datasets, including the sentence number (#Sent) and word
number (#Word) in Ds (also Dt), entity types comprising of class K of the source task (also the newly introduced
entity types in the target task), and the mention ratio of each entity type (e.g., 28.3% entity mentions are of the
person type in CoNLL03 (en)).

models like Hidden Markov Models (HMM)
(Zhou and Su, 2002), Maximum Entropy Markov
Models (MEMM) (Malouf, 2002; McCallum
et al., 2000), and Conditional Random Field
(CRF) (McCallum and Li, 2003). Starting with
(Collobert et al., 2011), neural network NER
systems with minimal feature engineering have
become popular. Such models do not require
exhausted feature engineering. Various neural
architectures have been proposed, like the bi-
directional long short-term memory network
(LSTM) plus a CRF layer (Huang et al., 2015),
the convolutional neural network (CNN) plus a
CRF layer, the combination of LSTM and CNN
(Chiu and Nichols, 2016), and the BERT based
LSTM+CRF model (Jiang et al., 2019; Hakala
and Pyysalo, 2019).

One of the most related works is (Peng et al.,
2019). This compared work proposes to perform
NER using entity lexicons and unlabeled data. For
this purpose, a distinct binary classifier is trained
for each entity type using the unbiased positive-
unlabeled (PU) learning algorithm (du Plessis
et al., 2014; Kiryo et al., 2017). At the inference
time, the recognition results of the binary clas-
sifiers for different entity types are combined to
make the final decision. The difference between
the compared work and our work is that, in the
compared work, the mention recognition for one
entity type is performed independently to the other
types through a binary classifier. Consequently,
it has to resolve the conflict between the recog-
nition results of different binary classifiers for
different entity types using a heuristic method
at the inference time. While, in this work, the
mention recognition for different entity types are
performed simultaneously using a single model.
This way, the recognition for different different
entity types can enhance each other, and it can

also avoid heuristically resolving the recognition
conflict at the inference time.

4 Experiments

4.1 Datasets

Following the experimental setting of the most
related work (Peng et al., 2019), we performed the
experiments on the four public NER datasets, in-
cluding Conll03 (en) in English (Tjong Kim Sang
and De Meulder, 2003), CoNLL02 (sp) (Sang
and Erik, 2002) in Spanish, MUC-7 (Chinchor,
1998), Twitter (Zhang et al., 2018) in English,
and OntoNotes4.0 (Weischedel et al., 2011) in
Chinese. For the former four datasets, we treated
the location (LOC) and person (PER) types as
the newly introduced entity types in the target
task, and treated the rest entity types as the
predefined entity types in the source task. While
for OntoNotes4.0, we treated the GPE (countries,
cities, states) and location (non-GPE locations,
mountain ranges, bodies of water) types as the
newly introduced entity types in the target task,
which are all classified as the location type in the
source task. Table 3 shows this setting and some
statistic information of these datasets.

4.2 Lexicon Collection

We used the same entity lexicons of the person and
location types as (Peng et al., 2019) to perform the
experiments. According to the illustration of the
refereed work, the collection of these lexicons is
quite easy. For example, the lexicon of the person
type is constructed from 2,000 popular English
names in England and Wales in 2015 from ONS,
and the lexicon of the location type is constructed
from names of countries and their top two popular
cities and 200 popular mountain names. The
resultant person and location lexicons contain
2,000 distinct person names and 948 location



Label Based Lexicon BasedDataset Type
CRF BiLSTM BiLSTM+CRF BERT Match bnPU AdaPU bnPS (our) AdaPS (our)

CoNLL03 (en)
PER 93.12 94.21 95.71 98.02 12.06 90.15 93.02 94.77 95.53
LOC 91.15 91.76 93.02 93.94 53.44 84.77 85.75 88.67 90.28
Overall 92.08 92.87 94.26 95.03 31.55 87.48 89.32 91.59 92.89

CoNLL02 (sp)
PER 86.77 88.93 90.41 96.82 31.25 87.49 89.83 94.49 95.14
LOC 80.30 75.43 80.55 86.45 47.12 75.26 76.97 80.06 80.48
Overall 83.02 81.10 84.62 90.94 39.69 80.59 82.42 86.13 86.69

MUC-7
PER 87.50 85.71 84.55 90.93 18.28 86.16 86.52 93.33 92.56
LOC 83.83 79.48 83.43 90.25 56.59 76.72 77.36 79.40 80.33
Overall 85.56 82.50 83.92 90.54 41.18 80.45 81.09 85.28 85.54

Twitter
PER 80.86 80.61 80.77 85.32 27.24 81.28 81.51 82.22 82.00
LOC 75.39 73.52 72.56 81.08 36.93 74.96 75.02 76.24 76.45
Overall 78.22 77.24 76.85 83.27 31.60 78.24 78.39 79.39 79.38

OntoNotes4.0 (cn)
GPE 64.37 65.73 68.21 79.66 44.42 68.17 68.15 72.37 71.27
LOC 25.03 25.92 35.29 43.65 23.17 33.28 34.33 36.40 37.22
Overall 61.02 61.81 65.15 77.93 40.33 65.79 66.22 70.66 69.78

Table 4: Testing chunk-level F1 on the target task. The four label-based methods are fully supervised and trained
on the fully re-annotated data of the source task. While the five lexicon-based methods train the model using only
the existing labels of the source task and entity lexicons of the new entity types. The best performance in each
group is marked in a boldface.

names, respectively. We refer you to the referred
work for more information about the lexicons.
Here, we address that it can only label a small part
of the mentions of the person and location types
using the lexicons.

4.3 Compared Methods

In the following, we refer to SourceBERT as the
BERT based model trained on the source task.
The compared methods can be divided into two
groups. The first group of methods perform the
target task using only Ds and the entity lexicons
of the new entity types, including the Match
method that directly uses the lexicons to search
for the mentions of the new entity types according
to algorithm 1, and the bnPU method as well
as its lexicon-adapted version AdaPU proposed
by (Peng et al., 2019). For these methods, we
combined their recognition result with that of
SourceBERT to perform entity recognition. In
particular, for a query sentence, we first perform
label inference using SourceBERT and then apply
these methods to words being predicted to be
the “O” class by SourceBERT to further identity
mentions of the new entity types. This practice
also applies to our proposed method AdaPS
as well as its variant, bnPS without lexicon
adaptation.

The second group of methods are fully su-
pervised, including the benchmark CRF model
Stanford NER (CRF) (Lafferty et al., 2001;

Finkel et al., 2005), the bi-directional long short-
term memory network with the CRF layer BiL-
STM+CRF or not BiLSTM (Huang et al., 2015),
and the BERT based model (Devlin et al., 2019)
described in the “Model architecture” section.
These supervised models were trained on the fully
re-annotated Ds according to the data labeling
criteria of the target task.

4.4 Implementation

Implementation of the fully supervised methods
except BERT fellow the protocol of (Peng
et al., 2019). The BERT model was initialized
using the bert-base-cased1 model for the three
English datasets, and initialized it using the bert-
multilingual-base-cased2 model for CoNLL02
(sp) and OntoNotes4.0 (cn); f c was implemented
with a one-layer MLP (768 softmax−−−−−→ ns + nt).
Parameter updating was implemented using the
Adam (Kinga and Adam, 2015) optimizer with
learning rate set to be 5e-5. For a fair comparison
with our methods, we replaced the BiLSTM-based
sequence modeling layer of bnPU and AdaPU
with the BERT module, which showed better
performance.

1https://s3.amazonaws.com/models.huggingface.co/bert/bert-
base-cased-pytorch model.bin

2https://s3.amazonaws.com/models.huggingface.co/bert/bert-
base-multilingual-cased-pytorch model.bin
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Figure 2: Testing chunk-level F1 (mean ± std. over 4 runs) of the BERT model against the re-annotated sentence
number for its finetuning (best view in color). The dot line denotes the performance of the BERT model, while the
solid line in the same color denotes the corresponding performance of our method, AdaPS. Note that AdaPS does
not use re-annotated data, thus its performances stays the same along the x-axis.

4.5 Results

Following the protocol of most previous works,
we apply the chunk-level (exact mention match)
F1 to evaluate the model performance. We report
the F1 score on the mention set of each new entity
type, as well as the overall F1 score on the mention
set of all new entity types. Note that, our methods
and the other lexicon-based baselines are only
applied to words being predicted as class K class
by SourceBERT. Thus, their performance should
be the same for the predefined entity types and
determined by SourceBERT.

General performance. Table 4 shows the
model performance on the four tested datasets.
From the table, we can observe that: 1)
Our methods, AdaPS and bnPS, consistently
outperform their PU-learning based counterparts
AdaPU and bnPU. This shows the advantage of
our methods over the PU-learning baselines. 2)
Compared with bnPU and bnPS, AdaPU and
AdaPS can achieve further improvement on
most of the four tested tasks. This verifies the
effectiveness of lexicon adaptation. However,
the improvement of AdaPS over bnPS is
much smaller than the improvement of AdaPU
over bnPU. Possible explanation is that bnPS
has achieved much better performance than
bnPU, thus achieving further improvement over
bnPS will be harder than over bnPU. 3) The
performance of the Match baseline is quite poor
(mainly due to the small recall). This observation
is consistent with the reported result in previous
works, and shows the insufficiency of the purely
lexicon-matching strategy. 4) Compared with
BiLSTM and BiLSTM+CRF, the BERT based
model achieves much better performance on the
four tested tasks. This shows the effectiveness
of the pretrained BERT model for NER. 5)
Our method AdaPS and bnPS can achieve quite

comparable performance with the fully supervised
BERT model, which requires to re-annotate Ds.
In addition, enhanced by the pretrained BERT
model, our methods even outperform the fully
supervised CRF, BiLSTM, and BiLSTM+CRF
models on the CoNLL03 (sp), MUC-7, and
Twitter datasets. This shows the efficiency of our
methods in transferring from the source task to
the target task.

Compared with model finetuning. In this
study, we explore how much re-annotated data it
requires for the BERT model to achieve similar
performance as our proposed method, AdaPS.
Figure 2 show the performance of BERT when
using varying sizes of randomly sampled re-
annotated data to finetune SourceBERT (with
the output layer replaced). From the figure, we
can see that: 1) Concerning about the overall F1
score, it averagely requires to re-annotate about
500, 200, 750, 750, and 1,000 sentences of Ds
to achieve similar performance as our method
on CoNLL03 (en), CoNLL02 (sp), MUC-7,
Twitter, and OntoNotes4.0 (cn), respectively. 2)
To achieve similar performance as our method
for all new entity types, it averagely requires
to re-annotate about 500, 500, 1,000, and 750
sentences of Ds On CoNLL03 (en), CoNLL02
(sp), MUC-7, and Twitter, respectively. 3) On
OntoNotes4.0 (cn), it requires to re-annotate
more data for the location type than for the GPE
type. This is because the occurring frequency of
mentions of the location type is much lower than
the occurring frequency of mentions of the GPE
type. Thus, it requires to annotate more data for
the location type to cover enough mentions of the
type.

Influence of SourceBERT for label inference.
As mentioned in the “compared methods” sec-
tion, we combined the recognition results of our



Dataset Type bnPS
- SourceBERT bnPS

CoNLL03 (en)
Predefined 82.58 83.43
New 91.27 91.59
Overall 87.51 88.02

CoNLL02 (sp)
Predefined 81.39 83.13
New 86.52 86.13
Overall 83.98 84.61

MUC-7
Predefined 79.01 80.74
New 84.54 85.28
Overall 82.03 83.19

Twitter
Predefined 47.83 48.33
New 79.56 79.39
Overall 69.96 69.68

Table 5: Testing chunk-level F1 of bnPS on the mention
set of the predefined entity types (Predefined), the new
entity types (New), and both of them (Overall), when
combining with SourceBERT (bnPS) or not (bnPS-
SourceBERT) to perform the target task.

method with those of the SourceBERT model
to perform entity recognition for the target task.
Here, we study the influence of SourceBERT
on the recognition results. Table 5 shows the
performance of our method, bnPS, when using
the trained classifier f only and when additionally
using SourceBERT to perform entity recogni-
tion for the target task. From the table, we
can see that: 1) It can consistently improve
the recognition performance of our method for
the predefined entity types by introducing the
SourceBERT model, and on three of the four
tested tasks, it can also improve the overall
recognition performance of our method. 2) For the
newly introduced entity types, the improvement
introduced by SourceBERT is relatively smaller,
and the improvement is even negative on some
tasks.

Let p(x) denote the data distribution of the
target domain and p(x|Din) denote the data dis-
tribution modeled based on the target data Din.
According to the setting of this work, the size of
Din should be small. This means p(x|Din) 6=
p(x|Din). Or more specifically, there are quite
a few regions x ∈ X that p(x) > δ while
p(x|Din) < δ, where δ > 0 is a threshold
described in the following.

Note that the anomaly detection method will
only extract examples x ∈ X where p(x ∈
X ||Din) > δ as the target data. This means that
the method is still not able to address the long-
tail distribution problem introduced by the small

size of the task data. In addition, the distribution
of the selected data is determined by the general
domain data but not the target data. This means
that the method is also sensitive to the selection of
the general domain.

Let p(x) denote the data distribution of the
target domain and p(x|Din) denote the data dis-
tribution modeled based on the target data Din.
According to the setting of this work, the size
of Din should be small. This means that there
are quite a few regions x ∈ X that p(x) > δ
while p(x|Din) < δ, where δ > 0 is a threshold
described in the following. Note that the anomaly
detection method will only extract examples x ∈
X that p(x ∈ X |Din) > δ as the target data. This
means that the method is still not able to address
the long-tail distribution problem introduced by
the small size of the target data. In addition, the
distribution of the selected data is determined by
the general domain data but not the target data.
This means that the method is sensitive to the
selection of the general domain.

5 Conclusion

In this work, we address the task to introduce
one or more new entity types to an existing NER
system, for which a dataset has been previously
labeled. To avoid laborious and time-consuming
data labeling, we propose a partially supervised
learning algorithm to perform the task using only
the labeled data of the existing NER system and
entity lexicons of the new entity types. Experi-
mental studies on four public NER datasets show
that our method can achieve quite comparable
performance with the fully supervised methods
using some easily collected lexicons. This makes
our method a good choice for fast entity type
introduction.
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