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Abstract

Aspect-based sentiment analysis aims to iden-
tify the sentiment polarity of a specific aspect
in product reviews. We notice that about 30%
of reviews do not contain obvious opinion
words, but still convey clear human-aware sen-
timent orientation, which is known as implicit
sentiment. However, recent neural network-
based approaches paid little attention to im-
plicit sentiment entailed in the reviews. To
overcome this issue, we adopt Supervised Con-
trastive Pre-training on large-scale sentiment-
annotated corpora retrieved from in-domain
language resources. By aligning the repre-
sentation of implicit sentiment expressions to
those with the same sentiment label, the pre-
training process leads to better capture of both
implicit and explicit sentiment orientation to-
wards aspects in reviews. Experimental results
show that our method achieves state-of-the-
art performance on SemEval2014 benchmarks,
and comprehensive analysis validates its effec-
tiveness on learning implicit sentiment.

1 Introduction

Aspect-level sentiment analysis (ABSA) is a fine-
grained variant aiming to identify the sentiment
polarity of one or more mentioned aspects in
product reviews. Recent studies tackle the task
by either employing attention mechanisms (Wang
et al., 2016b; Ma et al., 2017) or incorporating
syntax-aware graph structures (He et al., 2018;
Tang et al., 2020; Zhang et al., 2019; Sun et al.,
2019; Wang et al., 2020). Both methodologies aim
to capture the corresponding sentiment expression
towards a particular aspect, which is usually an
opinion word that explicitly expresses sentiment
polarity. For instance, given the review on a
restaurant “Great food but the service is dreadful”,
current models attempt to find “great” for aspect

“food” to determine the positive sentiment polarity
towards it.

∗∗ Corresponding author.

Reviews contain implicit sentiment

The waiter poured water on my hand and walked away
The bartender continued to pour champagne from his reserve

10 hours of battery life ...
The battery life is probably an hour

Table 1: Examples of reviews contain implicit
sentiment where aspects are marked to bold. In the
above examples, “pour” expresses opposite emotions
in different contexts. In the below examples, people
determine the sentiment orientations towards “battery”
by referring to a common lifetime.

However, implicit sentiment expressions widely
exist in the recognition of aspect-based sentiment.
Implicit sentiment expressions indicate sentiment
expressions that contain no polarity markers but
still convey clear human-aware sentiment polarity
in context (Russo et al., 2015). As illustrated in
Table 1, the comment “The waiter poured water on
my hand and walked away” towards aspect “waiter”
contains no opinion words, but can be clearly
interpreted to be negative. According to Table 2 (as
seen in Section 4), 27.47% and 30.09% of reviews
contain implicit sentiment among Restaurant and
Laptop datasets. However, most of the previous
methods generally pay little attention on modeling
implicit sentiment expressions. This motivates us
to better solve the task of ABSA by capturing
implicit sentiment in an advanced way.

To equip current models with the ability to
capture implicit sentiment, inadequate ABSA
datasets are the main challenge. With only a
few thousand labeled data, models could hardly
recognize comprehensive patterns of sentiment
expressions, and are unable to capture enough
commonsense knowledge, which is required in
sentiment identification. It reveals that external
sentiment knowledge should be introduced to solve
the problem.

Therefore, we adopt Supervised ContrAstive
Pre-Training(SCAPT) on external large-scale



sentiment-annotated corpora to learn sentiment
knowledge. Supervised contrastive learning gives
an aligned representation of sentiment expressions
with the same sentiment label. In embedding space,
explicit and implicit sentiment expressions with the
same sentiment orientation are pulled together, and
those with different sentiment labels are pushed
apart. Considering the sentiment annotations of
retrieved corpora are noisy, supervised contrastive
learning enhances noise immunity of the pre-
training process. Also, SCAPT contains review
reconstruction and masked aspect predication
objectives. The former requires representation
encoding review context besides sentiment polarity,
and the latter adds the model’s ability to capture the
sentiment target. Overall, the pre-training process
captures both implicit and explicit sentiment
orientation towards aspects in reviews.

Experimental evaluations conducted on
SemEval-2014 (Pontiki et al., 2014) and MAMS
(Jiang et al., 2019) datasets show that proposed
SCAPT outperforms baseline models by a large
margin. The results on partitioned datasets
demonstrate the effectiveness of both implicit
sentiment expression and explicit sentiment
expression. Moreover, the ablation study verifies
that SCAPT efficiently learns implicit sentiment
expression on the external noisy corpora. Codes
and datasets are publicly available1.

The contributions of this work include:
• We reveal that ABSA was only marginally

tackled by previous studies since they paid little
attention to implicit sentiment.

• We propose Supervised Contrastive Pre-training
to learn sentiment knowledge from large-scale
sentiment-annotated corpora.

• Experimental results show that our proposed
model achieves state-of-the-art performance, and
is effective to learn implicit sentiment.

2 Implicit Sentiment

As sentiment that can only be inferred within
the context of reviews, many researches address
the presence of implicit sentiment in sentiment
analysis. Toprak et al. (2010); Russo et al.
(2015) proposed similar terminologies (as implicit
polarity or polar facts), and provided corpora
containing implicit sentiment. Deng and Wiebe
(2014) detected implicit sentiment via inference
over explicit sentiment expressions and so-called

1https://github.com/Tribleave/SCAPT-ABSA

goodFor/badFor events. Choi and Wiebe (2014)
used +/-EffectWordNet lexicon to identify implicit
sentiment, by assuming sentiment expressions are
often related to states and events which have
positive/negative/null effects on entities.

To investigate the ubiquitous of implicit senti-
ment in ABSA, we split SemEval-2014 Restaurant
and Laptop benchmarks into Explicit Sentiment
Expression (ESE) slice and Implicit Sentiment
Expression (ISE) slice, based on the presence of
opinion words. Fan et al. (2019) have annotated
opinion words for target aspects on SemEval
benchmarks. We notice that the provided datasets
do not keep the original order and have some
differences in texts. Thus, we first match the
annotations to the original datasets, and then
manually pick the reviews including opinion words
towards the aspect from the remaining part. As
results shown in Table 2 (as seen in Section 4),
27.47% and 30.09% of reviews are divide into ISE
part among Restaurant and Laptop, revealing that
implicit sentiment exists widely in ABSA and is
worthy to be explored.

3 Methodology

In this section, we introduce the pre-training and
fine-tuning scheme of our models. In pre-training,
we introduce Supervised ContrAstive Pre-Training
(SCAPT) for ABSA, which learns the polarity
of sentiment expressions by leveraging retrieved
review corpus. In fine-tuning, aspect-aware fine-
tuning is adopted to enhance the ability of models
on aspect-based sentiment identification.

3.1 Supervised Contrastive Pre-training
Three objectives are included in SCAPT: super-
vised contrastive learning, masked aspect predic-
tion, and review reconstruction. The details of
SCAPT’s procedure are shown in Figure 1.

Transformer Encoder Backbone The pre-
training scheme is built on Transformer
encoder (Vaswani et al., 2017). We denote
the retrieved review corpus used in SCAPT as
D = {x1,x2, . . . ,xn} including n sentences.
The i-th sentence xi is labeled with yi. For
each input sentence xi, following Devlin
et al. (2019), we format the input sentence as
Ii = [CLS] + xi + [SEP] to feed into the model.
The output vector of [CLS] token encodes the
sentence representation h̄i:

h̄i, · · · = TransEnc(Ii) (1)

https://github.com/Tribleave/SCAPT-ABSA
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Figure 1: An overview of SCAPT on ABSA. SCAPT consists of three objectives, in which Supervised Contrastive
Learning aligns the representations with the same sentiment label.

Supervised Contrastive Learning Inspired by
Khosla et al. (2020), we adopt supervised con-
trastive learning objective in SCAPT to align the
representation of explicit and implicit sentiment
expressions with the same emotion. Supervised
contrastive learning encourages the model to cap-
ture the entailed sentiment orientation in context
and incorporate it in sentiment representation.

Specifically, for (xi, yi) within a batch B, we
first extract sentiment representation si = Wsh̄i
from sentence representation h̄i of xi. Ws could
be seen as a trainable sentiment perceptron for
sentences. The supervised contrastive loss on the
batch B is defined as:

P sup
B (i, c) =

exp (sim(si, sc)/τ)∑
b∈B,b 6=iexp (sim(si, sb)/τ)

(2)

LsupB =
∑
i∈B
− log

1

Ci

∑
yi=yc,c 6=i

P sup
B (i, c) (3)

Here, P sup
B (i, c) indicates the likelihood that sc

is most similar to si and τ is the temperature of
softmax. Here we simply use sim(si, sc) = si · sc
for similarity metric. Supervised contrastive loss
LsupB is calculated for every sentence si among B,
where Ci = |{c|yc = yi, c 6= i}| is the number of
samples in the same category yi in B. Notably,
we do not directly use sentence representation
in the supervised contrastive pre-training process.
Instead, we use sentiment representation to make
full use of document-level labeled corpora in
mining the inherent sentiment perception.

Review Reconstruction Motivated by the power
of denoising auto-encoder (Vincent et al., 2008)
and its success in pre-training models (Lewis et al.,
2020), we further propose review reconstruction
task to enhance the sentence representation on
context semantic modeling. With solely pre-
trained on the supervised contrastive learning task

which only focuses on sentiment regularization, the
essential semantic information is not completely
preserved in the sentence representations. Thus,
we additionally employ review reconstruction
in SCAPT to capture comprehensive context
information in sentence representations.

Generally, this objective reconstructs the whole
sentence xi with the sentence representation h̄i.
After encoding xi to the sentence representation h̄i,
the latter is fed to Transformer decoder for auto-
regressive generation:

P rec(x̃i) = TransDec(h̄i) (4)

x̃i is the recovered sentence. h̄i acts as a beginning-
of-sentence input embedding in the decoding
process to control the whole generation. We use the
original sentence xi without masking as the gold
reference of review reconstruction objective:

Lreci = − logP rec(x̃i) (5)

Masked Aspect Prediction In masked aspect
prediction, the model learns to predict the masked
aspect from a corrupted version for each review.
The masking strategy of input reviews consists of
following two steps:
1. Aspect Span Masking. Since all inputs are

from our retrieved corpora, we ensure that
each review contains at least one aspect. For
each input, the tokens of aspect spans are
replaced with [MASK] with 80% probability,
or replaced with a random token with 10%
probability, otherwise kept unchanged. Aspect
span masking provides a better capture of aspect
words.

2. Random Masking. After aspect span masking,
if the proportion of masked tokens is less than
15%, we randomly mask extra tokens from the
rest ones to reach the proportion.
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Figure 2: Aspect-aware fine-tuning on Transformer
encoder based models. Sentiment representation and
aspect-based representation are taken into account in
sentiment classification.

We denote the input token of [MASK] as wMASK.
For each masked input token at k-th position, its
contextualized hidden representation hik is fed into
a softmax layer to predict the original word:

Pmap(k) = softmax(Wohik) (6)

Specific to the above equation, hik is the output
of Transformer encoder at k-th position, Wo is a
trainable parameter matrix, and Pmap(k) indicates
the predict probability of the original word at k-th
position. The masked aspect prediction loss is an
accumulation of log-likelihood on predictions of
each masked position:

Lmap
i =

∑
xik=wMASK

− logPmap(k) (7)

Different from MLM (Devlin et al., 2019) or
sentiment masking (Tian et al., 2020), masked
aspect prediction focuses more on modeling aspect-
related context information in aspect-based rep-
resentations, which complements the other pre-
training objectives and purposefully benefits our
fine-tuning scheme.

Joint Training The three losses mentioned
above are combined and jointly trained in SCAPT.
For the overall pre-training loss LpreB on batch
B, the review reconstruction loss and masked
aspect prediction loss are counted on each example
b ∈ B, and α and β are coefficients to balance the
objectives:

LpreB = LsupB + α
∑
b∈B
Lrevb + β

∑
b∈B
Lmap
b (8)

3.2 Aspect-Aware Fine-tuning
Our proposed models are fine-tuned on ABSA
benchmarks by aspect-aware fine-tuning, to fully
leverage their ability of sentiment identification.
They also learn to capture aspect-related sentiment
information during fine-tuning.

Specifically, given a sentence xab =
{w1, . . . , wa, . . . wn} in ABSA dataset Dab,
and wa is one of the aspects occurring in xab. In
fine-tuning, models predict aspect-level sentiment
orientation yaba according to aspect-based
representation h̄aba and sentiment representation
sab.

Aspect-based Representation The research
(Ethayarajh, 2019) on pre-trained contextualized
word representation has demonstrated that it can
capture context information related to the word.
Thus, in spite of using laborious methods to embed
the aspect information, we extract aspect-based
representation h̄aba by collecting final hidden
states that correspond to wa. In fine-tuning, h̄aba
would focus on aspect-related words in context,
which we believe would enhance the perception
of aspect-specific opinion words and bring the
model with a good view of explicit sentiment.
Specifically, let Ia be the token index in aspect xa,
we average the hidden state hi for all i ∈ Ia to
acquire aspect-based representation:

h̄aba = AveragePoolingi∈Ia(hi) (9)

Notably, when processing multiple aspects
wa1, wa2, . . . in sentence xab, we extract aspect-
based representation h̄aba1, h̄

ab
a2, . . . in a single run,

while previous methods embed aspect and encoder
whole input for each aspect one-by-one.

Representation Combination For sentiment
classification, aspect-based representation and
sentiment representation are considered jointly to
predict aspect-level sentiment polarity. In that
case, fine-tuned model builds the perception of
both word-occurrence-related explicit sentiment
and semantic-related implicit sentiment. We
use the same sentiment perceptron Ws in pre-
training to extract sentiment representation sab

from sentence representation. Then sentiment
representation sab and aspect-based representation
h̄aba are concatenated for predicting aspect-level
sentiment polarity:

yaba = softmax
(
Wa[sab; h̄aba ]

)
(10)



yaba is the prediction on aspect xa and Wa is
trainable parameter matrix. Lastly, our fine-tuning
objective is cross-entropy loss for prediction task
Lab = −

∑
xab∈Dab log yaba .

4 Experimental Settings

ABSA Datasets Our experiments are mainly
conducted on two benchmarks, Laptop and Restau-
rant review from SemEval 2014 task 4 (Pontiki
et al., 2014). We use ESE and ISE slices of
their test parts to evaluate model performance
on explicit and implicit sentiment respectively.
The process to build these slices is detailed in
Section 2. Furthermore, we also use a more
challenging dataset, Multi-Aspect Multi-Sentiment
(MAMS) (Jiang et al., 2019), which shares the
same domain to SemEval2014 Restaurant. All
these datasets involve three sentiment categories
which are positive, neutral, and negative. The
details of these ABSA datasets can be found in
Table 2.

Retrieved External Corpora We retrieve large-
scale sentiment-annotated corpora from document-
level labeled data for pre-training. Specifically, we
first extract five-stars-rated/one-star-rated reviews
from the Yelp2 and Amazon Review (He and
McAuley, 2016) datasets, and label them as pos-
itive/negative. Such a procedure can mitigate the
noise in the 5-way rated document-level sentiment
language source. Then we preserve reviews within
the topic of restaurant/laptop to make sure that
pre-train corpora and ABSA datasets are in the
same domain. Later, we split these document-
level reviews into sentences and preserve sentences
containing the same aspect term as those mentioned
in ABSA training sets. The sentiment label of each
sentence is determined by the label of its original
review. After the retrieving process, we finally
acquire about 1.56/0.51 million sentence-level
reviews from Yelp/Amazon that are noisy-labeled
as positive/negative. After manually checking a
small portion of both corpora, we confirm that
both implicit and explicit sentiment expressions
are available. We pre-train our models on the
retrieved corpus that shares the same domain with
the downstream ABSA task. Specifically, we adopt
Yelp when dealing with Restaurant or MAMS, and
Amazon for Laptop.

2https://www.yelp.com/dataset

Dataset Positive Neutral Negative Total
Implicit

Sentiment
%

Restaurant-train 2164 805 633 3602 28.59
Restaurant-test 728 196 196 1120 23.84
Restaurant 2892 1001 829 4722 27.47
Laptop-train 987 866 460 2313 30.87
Laptop-test 341 128 169 638 27.27
Laptop 1328 994 629 2951 30.09
MAMS 4183 6253 3418 13854 -
YELP 1.17M - 0.39M 1.56M -
Amazon 0.38M - 0.13M 0.51M -

Table 2: Statistics on three datasets of ABSA and two
external corpus for SCAPT.

Models with SCAPT We apply SCAPT to
Transformer encoder and BERT, and these models
are fine-tuned by aspect-aware fine-tuning. The
models are so-called TransEncAsp+SCAPT and
BERTAsp+SCAPT respectively. We use a 300-
dimensional randomly initialized Transformer
encoder with 6 layers and 6 heads and BERT-
base-uncased as the basis. The pre-training for
Transformer encoder and BERT takes 80 and 8
epochs respectively. We adopt Adam (Kingma and
Ba, 2015) with warm-up to optimize our models
with learning rate 1e−3 for Transformer encoder
and 5e−5 for BERT. The pre-trained models are
fine-tuned by aspect-aware fine-tuning with 5e−5
learning rate. The hyper-parameters are set as
α = β = 1 for combining objectives in SCAPT,
and τ = 0.07 in supervised contrastive learning.

Baselines We compare the proposed models with
baselines from different perspectives to comprehen-
sively evaluate the performance of our approach:
• Attention-based models: ATAE-LSTM (Wang

et al., 2016b), IAN (Ma et al., 2017), RAM (Chen
et al., 2017), and MGAN (Fan et al., 2018).

• Graph neural networks: ASGCN (Zhang et al.,
2019), BiGCN (Zhang and Qian, 2020), CDT
(Sun et al., 2019), and RGAT (Wang et al., 2020).

• Knowledge-enhanced methods: TransCap
(Chen and Qian, 2019), BERT-SPC 3 (Devlin
et al., 2019), CapsNet+BERT (Jiang et al., 2019),
BERT-PT (Xu et al., 2019), BERT-ADA (Rietzler
et al., 2020), and R-GAT+BERT (Wang et al.,
2020).

For better analyze the effect of SCAPT and aspect-
aware fine-tuning, we further propose the following
variants as baselines:

3BERT-SPC denotes fine-tuning BERT for Sentence Pair
Classification, in which the input review is transformed to
“[CLS] + context + [SEP] + aspect + [SEP]” and fed into
BERT for classification (Song et al., 2019).

https://www.yelp.com/dataset


Method
Restaurant Laptop

Acc. F1 ESE ISE Acc. F1 ESE ISE

Attention

ATAE-LSTM (Wang et al., 2016a) 76.90* 62.64* 84.16 53.71 65.37* 62.92* 75.69 37.86
IAN (Ma et al., 2017) 76.88* 67.71* 86.52 46.07 67.24* 63.72* 75.86 44.25
RAM (Chen et al., 2017) 80.23 70.80 85.11 55.81 74.49 71.35 75.86 44.25
MGAN (Fan et al., 2018) 81.25 71.94 85.18 60.04 75.39 72.47 76.16 56.31

GNN

ASGCN (Zhang et al., 2019) 80.77 72.02 84.29 62.91 75.55 71.05 75.46 57.77
BiGCN (Zhang and Qian, 2020) 81.97 73.48 87.19 59.05 74.59 71.84 79.53 62.64
CDT (Sun et al., 2019) 82.30 74.02 88.79 65.87 77.19 72.99 77.53 68.90
RGAT (Wang et al., 2020) 83.30 76.08 89.45 61.05 77.42 73.76 80.17 65.52

Knowledge
Enhanced

TransCap (Chen and Qian, 2019) 79.55 71.41 86.52 59.93 73.87 70.10 77.16 60.34
BERT-SPC (Devlin et al., 2019) 83.57* 77.16* 89.21 65.54 78.22* 73.45* 81.47 69.54
CapsNet+BERT (Jiang et al., 2019) 85.09* 77.75* 91.68 64.04 78.21* 73.34* 82.33 67.24
BERT-PT (Xu et al., 2019) 84.95 76.96 92.15 64.79 78.07 75.08 81.47 71.27
BERT-ADA (Rietzler et al., 2020) 87.14 80.05 94.14 65.92 78.96 74.18 82.76 70.11
R-GAT+BERT (Wang et al., 2020) 86.60 81.35 92.73 67.79 78.21 74.07 82.44 72.99

Ours

TransEncAsp 77.10 57.92 86.97 48.96 65.83 59.53 74.31 43.20
BERTAsp 85.80 78.95 92.73 63.67 78.53 74.07 82.33 68.39
BERTAsp+CEPT 87.50 82.07 93.67 67.79 81.66 78.38 83.84 75.86
TransEncAsp+SCAPT 83.39 74.53 88.04 68.55 77.17 73.23 78.70 72.82
BERTAsp+SCAPT 89.11 83.79 94.37 72.28 82.76 79.15 84.70 77.59

Table 3: Overall performance of different methods on Restaurant and Laptop. We rerun the code of baselines and
report their accuracy on ESE and ISE slices of the two datasets. For the baselines of which the accuracy or F1-score
is missing, we also report the accuracy and F1-score of our rerunning version, and these results are marked with *.

• TransEncAsp: Directly apply aspect-aware
fine-tuning on randomly initialized Transformer
encoder without pre-training.

• BERTAsp: Directly apply aspect-aware fine-
tuning on BERT-base.

• BERTAsp+CEPT: Merely replace the super-
vised contrastive learning loss with cross-entropy
loss in SCAPT. Other settings are the same as
BERTAsp+SCAPT.

5 Results and Analysis

This section mainly demonstrates the experiment
results. Our model achieves state-of-the-art
on three ABSA benchmarks, and we illustrate
the representation alignment effect of supervised
contrastive learning and the effectiveness of other
parts from several perspectives. Moreover, we
reveal that our model is capable to identify
implicit sentiment, and attributes its effectiveness
to supervised contrastive learning in SCAPT.

5.1 Main Results

The performance of baselines and our proposed
models are shown in Table 3. Models are evaluated
with Accuracy and Macro-F1. According to the
results, several observations can be noted.

Our model achieves SOTA performance.
BERTAsp+SCAPT outperforms the current SOTA
model by 1.97%/3.80% on Restaurant/Laptop.
TransEncAsp+SCAPT performs better than most
baselines without pre-trained knowledge. More-
over, BERTAsp+SCAPT also achieves the best
performance on ESE/ISE slices of the two datasets,
revealing the effectiveness of the proposed pre-
training scheme.

After pre-trained with SCAPT, models im-
prove significantly on ABSA tasks. Com-
pared with BERTAsp which directly fine-tuned
on ABSA datasets, BERTAsp+SCAPT achieves
a 3.31%/4.23% performance gain on Restau-
rant/Laptop, which is a convinced proof that acquir-
ing in-domain knowledge with proper adaptive pre-
training is still necessary for knowledge-enhanced
models, and SCAPT is an effective approach to
be adopted. Moreover, TransEncAsp+SCAPT is
6.29%/11.34% better that TransEncAsp, illustrat-
ing that incorporating sentiment knowledge with
SCAPT greatly potentiates ABSA models.

SCAPT is good at learning implicit senti-
ment. This could be verified from several
perspectives. First, compared with its perfor-
mance on ESE, BERTAsp+SCAPT appears to
be much better on ISE. Compared with other



Method
MAMS

Acc. F1
ATAE-LSTM 77.05 -
IAN 76.60 -
CapsNet 79.78 -
BERT-SPC 82.22 -
CapsNet+BERT 83.39 -
BERTAsp 84.20 83.82
TransEncAsp+SCAPT 80.54 79.83
BERTAsp+SCAPT 85.63 85.24

Table 4: Model performance on MAMS.

works, BERTAsp+SCAPT is around 0-2% better
on ESE slices, but surpasses the previous SOTA
model by 4.49%/4.60% on ISE slices. There-
fore, the well performance of BERTAsp+SCAPT
mainly contributes to its awareness of implicit
sentiment. Second, TransEncAsp+SCAPT behaves
much better than BERTAsp on ISE slices. With
only exposing to million-scale pre-training corpus,
TransEncAsp+SCAPT is generally worse than
BERTAsp on the whole task, but exceeds BERTAsp
by 4.88%/4.43% on ISE slices. This demonstrates
that SCAPT is data-effective on learning implicit
sentiment. Last, after pre-trained with SCAPT,
models attain remarkable performance gain on
ISE which is much more significant than ESE.
BERTAsp+SCAPT is 2% better than BERTAsp on
ESE, but outperforms the latter by 8.61%/9.20%
on ISE. As for Transformer encoder based models,
the performance gain on ISE after SCAPT goes
beyond 20%. We conclude that what models have
learned in SCAPT is dominantly the perception of
implicit sentiment.

Aspect-aware fine-tuning serves as a comple-
ment to SCAPT. We find that models with aspect-
aware fine-tuning perform better on ESE slices
of the datasets. Specifically, BERTAsp performs
worse on ISE but better on ESE compared with
BERT-SPC, and is therefore evaluated to be better
on the two datasets. The better performance
of BERTAsp on ESE slices may mainly due
to its use of aspect-based representation, which
attends to aspect-related context that may contain
sentiment orientation. This characteristic of aspect-
aware fine-tuning makes it suitable to enhance the
recognition of explicit sentiment of models pre-
trained with SCAPT.

Method
Restaurant

Acc. F1
TransEncAsp 77.10 57.92
TransEncAsp+SCAPT 83.39 74.53
BERTAsp 85.71 78.95
BERTAsp+SCAPT 89.11 83.79

(-SCL) 86.73 80.90
(-MAP) 88.13 83.22
(-RR) 87.95 82.38
(-MAP-RR) 87.14 81.10

Table 5: Ablation study on SCAPT.

5.2 Effectiveness on Multi-aspect ABSA

Table 4 shows the performance of baselines and
our models in MAMS datasets. Though it is
challenging to distinguish the sentiment polarities
of multiple aspects in a single sentence, the result
shows TransEncAsp+SCAPT outperforms base-
lines that lack external sentiment knowledge, and
BERTAsp+SCAPT achieves state-of-the-art in the
multi-aspect scenario. The efficiency of our models
can attribute to both SCAPT and aspect-aware fine-
tuning since they enhance the learning of implicit
and explicit sentiment respectively. Besides,
BERTAsp performs much more better than BERT-
SPC in MAMS than in Restaurant/Laptop. We
suppose the exceeding performance of BERTAsp
credits to its modeling of contextual information
in aspect-based representation, which is more
important in multi-aspect ABSA.

5.3 Implicit Sentiment Learning in SCAPT

We conclude the key aspects of learning implicit
sentiment in SCAPT as exposing to sentiment
knowledge and using supervised contrastive learn-
ing. The results in Table 3 shows that implicit
sentiment is more challenging to learn than explicit
sentiment, and previous methods based on attention
or syntax modeling are not tackling the issue
perfectly. The knowledge-enhanced baselines
perform slightly better with 5% performance gain
on ISE. By pre-training on large-scale sentiment-
annotated corpora, our models achieve remarkable
performance improvement on implicit sentiment
learning, with 19.59%/29.62% relative gain on
TransEncAsp. These results prove that in-domain
sentiment knowledge is absolutely necessary for
implicit sentiment learning, which is provided by
our retrieved corpora. Furthermore, the models
pre-trained with supervised contrastive learning
objective surpasses cross-entropy classification in



Explicit Pos
Explicit Neg
Explicit Neu

Implicit Pos
Implicit Neg
Implicit Neu

(a) BERTAsp

Explicit Pos
Explicit Neg
Explicit Neu

Implicit Pos
Implicit Neg
Implicit Neu

(b) BERTAsp+SCAPT

Figure 3: Visualization of the hidden sentiment representations on Restaurant (best to view the colored version).
BERTAsp+SCAPT tightly clusters the representations of both explicit and implicit sentiment expressions.

ISE slices. Compared with BERTAsp+CEPT,
BERTAsp+SCAPT is 4.49%/1.73% better on ISE,
which leads to its better performance on the whole
tasks. The deployment of supervised contrastive
learning objective enhances noise immunity of the
pre-training process, thus the pre-trained models
are more effective in learning implicit sentiment.

5.4 Ablation Study on SCAPT

As illustrated in Table 5, we validate the effective-
ness of each part by ablation study. First, removing
supervised contrastive learning loss (-SCL) leads to
a 2.38% performance drop on Restaurant, which is
more significant than the occation of removing the
other two objectives (-MAP-RR). This verifies that
supervised contrastive learning plays a primary role
in SCAPT. Besides, we observe that the removing
of masked aspect prediction and review reconstruc-
tion objectives also brings about performance drop.
This demonstrates that these mechanisms are also
indispensable in SCAPT.

5.5 Hidden Sentiment Representations

For better understanding the behavior of our
proposed methods, we further perform a visual-
ization of the sentiment representation using t-SNE
(Van der Maaten and Hinton, 2008). As seen
in Figure 3, models with sentiment pre-training
have a strong embedding ability for sentiment
expression, while many misclassifications can
be found in BERTAsp. The visualization also
shows that BERTAsp+SCAPT tightly clusters
the representations of both implicit and explicit
sentiment expressions.

Method
Restaurant-test Laptop-test

Ori → New Decline Ori → New Decline
LSTM 75.98→14.64 -61.34 67.55→9.87 -57.68
ASGCN 77.86→24.73 -53.13 72.41→19.91 -52.50
CapsNet+BERT 83.48→55.36 -28.12 77.12→25.86 -51.46
BERT 83.04→54.82 -29.22 77.59→50.94 -26.65
BERT-PT 86.70→59.29 -27.41 78.53→53.29 -25.24
TransEncAsp+SCAPT 83.39→67.76 -15.63 76.80→52.52 -24.28
BERTAsp+SCAPT 89.11→80.06 -9.05 82.76→76.13 -6.63

Table 6: Model performance on aspect robustness test
sets. We compare the model accuracy on the original
and new test sets, and the decline of prediction on new
examples are reported.

5.6 Aspect Robustness

We analyze the robustness of our proposed models
on aspect robustness test sets. Aspect robustness
of ABSA was first emphasized and tested in Xing
et al. (2020) by applying several perturbations on
reviews from Restaurant and Laptop. TextFlint
(Wang et al., 2021) extended these transformations
by introducing transformations from various lin-
guistic perspectives. The test sets are designed
to probe whether models could distinguish the
sentiment of the target aspect from the non-target
aspects and unrelated information.

Table 6 lists the performance of tested mod-
els, in which the robustness of our proposed
models is convincingly proved. Comparing to
obvious performance drop in baseline models,
BERTAsp+SCAPT performs significantly better
than other models with 9.05%/6.63% decline on
Restaurant and Laptop. The results show that
models pre-trained with SCAPT are more robust
for aspect-level perturbations, which attribute to
the better modeling for sentiment and context
information with the enhancement of in-domain
sentiment knowledge.



6 Related Work

Neural Network Methods for ABSA The early
neural network methods (Wang et al., 2016b; Ma
et al., 2017) in ABSA employed various of atten-
tion mechanisms to identify aspect-related context.
Memory Network (Tang et al., 2016; Chen et al.,
2017; Wang et al., 2018) was further proposed to
identify corresponding sentiment expression for
aspects. Recent efforts (He et al., 2018; Tang et al.,
2020) used syntax information from dependency
trees to enhance attention-based models. A lot
of works (Zhang et al., 2019; Sun et al., 2019;
Wang et al., 2020) make use of graph neural
networks to incorporate tree-structured syntactic
information and capture aspect-related information
in text. Another line in ABSA concentrated on
utilizing external corpus and pre-trained knowledge
to enhance semantic awareness of models (Xu et al.,
2019; Rietzler et al., 2020; Dai et al., 2021).

Contrastive Representation Learning Our
work adopts contrastive method in representation
learning to acquire discriminating instance
representations. Recent work on contrastive
representation learning of instances usually based
on estimating representation similarities on similar
and dissimilar pairs, which are usually composed
in a self-supervised manner (Chen et al., 2020;
He et al., 2020). Specially, Khosla et al. (2020)
illustrated a supervised contrastive method to build
positive pairs between instances with same class
label, and put their representations together. In
this work, our models learn to capture implicit
sentiment from informative but noisy language
resources in supervised contrastive pre-training.

7 Conclusion

In this paper, we introduce Supervised ContrAstive
Pre-Training (SCAPT) for ABSA. By noticing that
implicit sentiment is not well-handled by current
neural network based ABSA models, we argue that
more sentiment knowledge is required to solve
this issue. We therefore retrieve large-scale in-
domain annotated corpora, and propose SCAPT
to learn sentiment knowledge from the corpora.
Experimental results show that our proposed
models with SCAPT achieve SOTA performance.
Moreover, SCAPT is proven to be effective in
implicit sentiment learning. We hope to inspire
future researches on learning and modeling implicit
sentiment with knowledge-enhanced methods.
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