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Abstract

Natural question generation (QG) aims to gen-
erate questions from a passage, and gener-
ated questions are answered from the passage.
Most models with state-of-the-art performance
model the previously generated text at each de-
coding step. However, (1) they ignore the rich
structure information that is hidden in the pre-
viously generated text. (2) they ignore the im-
pact of copied words on the passage. We per-
ceive that information in previously generated
words serves as auxiliary information in subse-
quent generation. To address these problems,
we design the Iterative Graph Network-based
Decoder (IGND) to model the previous gener-
ation using a Graph Neural Network at each
decoding step. Moreover, our graph model
captures dependency relations in the passage
that boost the generation. Experimental results
demonstrate that our model outperforms the
state-of-the-art models with sentence-level QG
tasks on SQuAD and MARCO datasets.

1 Introduction

Automatic Question Generation (QG) is the task of
generating question-answer pairs from a declara-
tive sentence, QG has many useful applications: (1)
it improves the question answering task (Chen et al.,
2017) by providing more training data (Tang et al.,
2017; Yuan et al., 2017); (2) it generates practice
exercises and assessments for educational purposes
(Heilman and Smith, 2010); and (3) it helps dialog
systems to kick-start and continue a conversation
with human users (Mostafazadeh et al., 2016). In
this study, we focus on sentence-level QG tasks.

Conventional QG methods (Mostow and Chen,
2009; Heilman and Smith, 2010; Dhole and Man-
ning, 2020) rely on heuristic rules or hand-crafted
templates as it suffers a significant lack of ques-
tion, sticking to a few simple and reliable syntactic
transformation patterns. Recently, neural-based ap-
proaches to QG have achieved remarkable success,
by applying large-scale reading comprehension

Figure 1: An example (lower-cased) of using the struc-
ture information that is hidden in previously gener-
ated words information and the impact of copied word,
where the answer words are in blue and the copied
words are in purple. The model can copy the right word
develop with a high certainty (0.97 score).

datasets and employing the encoder-decoder frame-
work. Most of the existing works are based on the
sequence-to-sequence (Seq2Seq) network, incorpo-
rating the attention mechanism and copy mode, ap-
plied by (Zhou et al., 2018). Intuitively, connecting
an answer to a passage lies at the heart of this task.
(Song et al., 2018) leveraged multi-perspective
matching methods and (Sun et al., 2018) proposed
a position-aware model to put more emphasis on
answer-surrounded context words. (Zhao et al.,
2018) aggregated the paragraph-level context to
provide sufficient information for question genera-
tion. (Chen et al., 2020; Liu et al., 2019) employed
the Graph2Seq architecture to capture the informa-
tion in a passage.

Most models with state-of-the-art performance
model the previously generated text at each de-
coding step. However, they ignore (1) the rich
structure information hidden in generated words
(2) and the impact of copied words on the passage.
We perceive that this information offers auxiliary
information in the future generation. In Figure 1,
the copied word donald davies helps model to copy



the develop with high certainty (0.97 score). The
copied word donald davies is a subject in the pas-
sage and the answer message routing methodology
is the object in the passage. After capturing the
structure information from the generated words,
the model pays more attention to the words related
to generated words and copy the predicate in the
passage. However, the decoders in most QG model
process the generated text as the sequence of words,
which ignore the text structure. Therefore, it is hard
to capture the structure information in previously
generated words for most QG models. In addi-
tion, the information about which word has been
copied changes at each step and is updated itera-
tively. However, most QG models are unable to
achieve that.

To address these issues, in this paper, we design
an Iterative Graph Network-based Decoder (IGND)
to model the structure information in the previous
generation at each decode step using a Graph Neu-
ral Network. We observed that the words copied
from a passage played a decisive role in the seman-
tics of the whole question. We modeled the copied
word information to capture structure information
and use their impact on the passage. We introduce
the role tag to the passage graph, where all words
have the role tag no-copy, except for answer words,
which have the tag answer. The IGND updates
the role tag at each decoding step. For example,
the role tag changes to copied when the word in
this node is copied to the question at this decod-
ing step. Then, the information is aggregated by a
novel Bi-directional Gated Graph Neural Network
(bi-GGNN). Moreover, we propose a relational-
graph encoder, which employs a similar bi-GGNN
to capture the dependency relations of a passage
that boost the generation.

We performed experiments on two reading com-
prehension datasets, SQuAD and MARCO, and ob-
tained promising results. Our model achieves new
state-of-the-art results in sentence-level QG tasks
on both datasets, with BLEU-4 20.33 on SQuAD
and 23.87 on MARCO.

Our main contributions are as follows:

• We design an Iterative Graph Network-based
Decoder (IGND) to capture the structure in-
formation in generation and model the copied
words at each decoding step.

• We propose a relational-graph encoder to en-
code the dependency relations in the passages

and establish the connections between an an-
swer and a passage.

• The proposed model that focuses on sentence-
level QG tasks achieves new state-of-the-art
scores, and outperforms existing methods on
the standard SQuAD and MARCO bench-
marks for QG.

2 Model Description

In this section, we define the question gener-
ation task and present the Graph-to-Sequence
(Graph2Seq) model with our IGND. We design and
discuss the details of each component as shown in
Figure 2.

2.1 Problem Formulation

The question generation generates natural language
questions based on given sentences (Zhou et al.,
2018). The generated questions must be answered
from the input data.

We assume that a text passage is a sequence
of word tokens Xp = {xp1, x

p
2, ..., x

p
N}, and a tar-

get answer is a sequence of word tokens Xa =
{xa1, xa2, ..., xaL}. The natural question generation
task generates the best natural language question
consisting of a sequence of word tokens Ŷ =
{y1, y2, ..., yT } and maximizing the conditional
likelihood argmaxY P (Y |Xp, Xa). Here N, L,
and T are the lengths of the passage, the answer,
and the question, respectively. We focus on the
problem set based on a set of passages, answers,
and questions triples. We learn the connection be-
tween them. Existing QG approaches (Zhou et al.,
2018; Sun et al., 2018; Song et al., 2018; Zhao et al.,
2018; Chen et al., 2020) have the same assumption.

2.2 Graph2Seq Model with Iterative Graph
Network-based Decoder

Compared to RNNs, GNNs can efficiently use the
rich hidden text structure information such as syn-
tactic information. In addition, they can model the
global relations among the sequence words to im-
prove the representations. We construct a directed
and weighted text graph G based on dependency
tree. In a passage graph, each passage word is
treated as a node and the dependency relation be-
tween two words is treated as an edge. Further-
more, our Graph2Seq model encodes the passage
graph with dependency relations and decodes the
question sequence with IGND.



Figure 2: Overall architecture of the proposed model. In Iterative Graph Network-based Decoder, we use the shade
of the color to indicate how high the node copy score is and the color of zero-score node is white. Furthermore,
answer nodes and copied nodes are yellow and purple respectively.

2.2.1 Relational Encoder
Answer information is crucial to generate the high
quality and answer-relevant questions. Dependency
relations connect the answer and passage words.
To use the dependency relations, we propose the
relational embedding that aggregates global depen-
dency relations for each words. Intuitively, rela-
tional embedding indicates words to pay more at-
tention.

Firstly we adopt a bi-LSTM encoder to get the
context hidden states H:

ei = [wi, bi, ai, pi, ni, ui] (1)

hi = [
→
hi,
←
hi] (2)

→
hi = LSTM(ei,

→
hi−1) (3)

←
hi = LSTM(ei

←
hi+1) (4)

where wi, bi, ai, ni, pi, ui represent Glove embed-
ding of the word, BERT embedding of the word,
answer position embedding, named entity embed-
ding, part-of-speech embedding and word case em-

bedding as proposed by (Zhou et al., 2018),
→
hi and

←
hi is forward and backward hidden states of the ith
token in passage XP . Moreover, we get the answer
hidden states Ha in a similar way.

Then, we get the answer-aware weighted context
hidden states Hp:

eai = v>a tanh(WaH
a +Whhi) (5)

αa
i =

exp(eai )∑N
j=1 exp(e

a
j )

(6)

Hp = αaH (7)

where H = [h1, h2, ..., hN ] is the passage hidden
states and v>a , Wa, Wh are trainable weighted ma-
trices.

To learn the graph embedding from the text pas-
sage graph, we adopt the novel bi-GGNN that fuses
the intermediate node embeddings from incoming
and outgoing directions in every iteration. In bi-
GGNN, passage embeddings for each nodes are ini-
tialized to the passage embeddings Hp, and the re-
lational embeddings are initialized randomly. The
graph parameters are shared at every hop of com-
putation. And at every node in the graph, we apply
a mean aggregator to aggregate neighboring node
passage embedding and get the aggregation vector:

hk+1
N`pi

=
hkN`pi

+
∑

j∈N`
hkpj

|N`|
(8)

hk+1
Napi

=
hkNapi

+
∑

j∈Na
hkpj

|Na|
(9)

Similarly, we get the relation embedding aggre-
gation vector:

hk+1
N`relai

=
hkN`relai

+
∑

j∈N`
rij

|N`|
(10)

hk+1
Narelai

=
hkNarelai

+
∑

j∈Na
rij

|Na|
(11)

where rij is the relations embedding between node
i and j.

We fuse the information aggregated in two direc-
tions at each hop:

hkNpi
= Fuse(hkN`pi

, hkNapi
) (12)

hkNrelai
= Fuse(hkN`relai

, hkNarelai
) (13)

Fuse(a, b) = z � a+ (1− z)� b (14)

where z is a gated sum of two information as fusion
function:

z = σ(Wz[a; b; a� b; a− b] + bz) (15)



where � is the component-wise multiplication and
σ is a sigmoid function.

We used a GRU (Cho et al.) to update the node
embedding and incorpotate the aggregation infor-
mation:

hkpi = GRU(hk−1pi , hkNpi
) (16)

hkrelai = GRU(hk−1relai
, hkNrelai

) (17)

After n hops computation, we obtain the final con-
text embedding, relational embedding hnci , h

n
relai

for node i. Then, the node embedding incorporat-
ing both text information and syntactic information
is calculated as:

hni = hnci + hnrelai (18)

Furthermore, we can get a graph-level embedding
hG with a max pool:

hG =MaxPool(W ghni ) (19)

where W g is a trainable weighted matrix.

2.2.2 Iterative Graph Network-based
Decoder

We adopt the architecture similar to other QG
models, which is an attention-based LSTM de-
coder with a copy mechanism (Sun et al., 2018).
However, most existing decoders ignore the struc-
ture information hidden in previous generated
words and the impact of copied words on passage,
which could serve as auxiliary information. To ad-
dress this problem, we design the Iterative Graph
Network-based Decoder(IGND).

The decoder takes the graph-level embedding
followed by two separate fully-connected layers as
initial hidden states s0 and initial context vector c0:

s0 = tanh(Wt2tanh(Wt1h
G + bt1) + bt2) (20)

c0 = s0 (21)

We construct a graph in decoder Gd similar to
the passage graph G that adds the role tag infor-
mation to node embedding. We introduce the role
tag to nodes in the graph: each node has a role
tag that is updated at each decode step including
answer, copied and no-copy. The nodes that rep-
resent the answer word contain the answer tag at
whole decode process, the nodes have been copied
to question obtain the copied tag and other nodes
obtain the no-copy tag:

tagi =


0 xi has been copied
1 xi is a part of answer
2 xi has not been copied

Intuitively, role tag can guide the model to incor-
porate the dependency relations to generate answer-
relevant questions as shown in Figure 1.

At each decode step t, the embeddings for each
nodes htdiare reinitialized:

htdi = [hni ; r
t
i ] (22)

where hni is the node embedding of the passage
graph calculated by equation (18) and rti is the
embedding of role tag for node i at step t. Further-
more, we adopt a bi-GGNN and a mean aggregator
to aggregate the node embeddings, similar to that
of Section 2.2.1. After n hops computation, we
obtain the final node embeddings htdi in decoder
graph.

For each decoding step t, the LSTM reads the
embedding of the previous word wt−1, previous
attentional context vector ct−1 and previous hidden
state st−1 to calculate its current hidden state:

st = LSTM([wt−1; ct−1], st−1) (23)

At time step t, the attention weights and the
context vector are calculated as:

et,i = v>tanh(Wsst +Whh
t
di
) (24)

αt,i =
exp(et,i)∑N
j=1 exp(et,j)

(25)

ct =
N∑
i=1

αt,ih
t
di

(26)

where α is the attention weights previous genera-
tion information.

The copy mode copies words directly from the
source sequence. As the attention weights measure
the relevance of each input word to the partial de-
coding state and incorporate the generated words
information, we treat αt as the copy probability,
Pcopy = αt.

Then, si and ci will be fed into a two-layer feed-
forward network to produce the vocabulary distri-
bution Pvocab.

The final probability distribution is the combina-
tion of the two modes:

P (w) = pgPvocab + (1− pg)Pcopy (27)

where pg is computed from the context vector ct,
decoder hidden states st and the decoder input wt:

pg = σ(Wg(ct + st + wt)) (28)



where Wg is a trainable weighted matrix and σ is a
sigmoid function.

We train our model by the negative log likeli-
hood for the target sequence y:

L =
1

T

T∑
t=1

logP (ỹt = yt) (29)

3 Experimental Settings

3.1 Dataset
3.1.1 SQuAD
The SQuAD (Rajpurkar et al., 2016) dataset con-
tains 536 Wikipedia articles and more than 100K
questions from the articles of crowd-workers. An-
swers are provided to the questions, which are
spans of tokens in the articles. We use the sentence-
level data shared by (Zhou et al., 2018) 1 and there
are 86,635, 8,965 and 8,964 triples correspond-
ingly.

3.1.2 MARCO
MS MARCO datasets (Nguyen et al., 2016) 2

contains 100,000 queries with corresponding an-
swers and passages. All questions are sampled
from real anonymized user queries and context pas-
sages are extracted from real web documents. We
picked a subset of MS MARCO data where an-
swers were sub-spans within the passages to con-
struct sentence-level dataset. That contains 4,6109,
4539 and 4539 sentence-question-answer triples
for training, validation and test respectively.

3.2 Baseline Methods and Metrics
For fair comparison, we report the following recent
works on sentence-level QG dataset:

NQG++ (Zhou et al., 2018): a feature-enriched
Seq2Seq model.

MPQG (Song et al., 2018): uses different match-
ing strategies to explicitly model the information
between answer and context.

Answer-focused Position-aware model (Sun
et al., 2018): generates an accurate interrogative
word and focuses on important context words.

s2sa-at-mp-gsa (Zhao et al., 2018): employs
a gated attention encoder and a maxout pointer
decoder to deal with long text inputs.

ASs2s (Kim et al., 2019): proposes an answer
separated Seq2Seq model by replacing the answer
in the input sequence with some specific words.

1https://res.qyzhou.me/redistribute.zip
2https://microsoft.github.io/msmarco/

To the Point Context (Li et al., 2019): ex-
tracts answer-relevant relations in the sentence and
encodes both sentence and relations to capture
answer-focused representations.

QG-pg (Jia et al., 2020): leverages the para-
phrase information to the QG model.

Graph2seq +RL+ BERT (Chen et al., 2020):
is a BERT enhanced Graph2seq QG model with
reinforcement learning.

QQP & QAP with BERT (Zhang and Bansal,
2019): combines the QG task and QA task with
BERT.

Syn-QG (Dhole and Manning, 2020): is a rule-
based QG model that uses the PropBank argument
descriptions and VerbNet state predicates to incor-
porate shallow semantic content. It is a SOTA
model in sentence-level QG task.

Recurrent BERT (Chan and Fan, 2020): em-
ploys the pre-trained BERT language model to
tackle question generation tasks. It is also a SOTA
model in sentence-level QG task.

We evaluate the performance of our models us-
ing BLEU (Papineni et al., 2002) and ROUGE-L
(Lin, 2004), which are widely used in previous QG
works.

3.3 Implementation Details

We fix the 300-dim GloVe vectors for the most
frequent 70,000 words in the training set. We com-
pute the 1024-dim BERT embeddings on the fly
for each word in text using a trainable weighted
sum of all BERT layer outputs. The embedding
sizes of the case, answer, copy, POS , and NER
tags are set of 3, 3, 3, 12 and 8, respectively. We set
the hidden state size of BiLSTM to 150 so that the
concatenated state size for both directions is 300.
The size of all other hidden layers is set to 300. We
apply a variational dropout rate of 0.4 after word
embedding layers and 0.3 after RNN layers. The
number of GNN hops in both encoder and decoder
is set to 4. We use Adam (Kingma and Ba, 2014)
as the optimizer and the learning rate is set to 0.001.
We reduce the learning rate by a factor of 0.5 if the
validation BLEU-4 score stops improving for three
epochs. We stop the training when no improvement
is seen for 10 epochs. We clip the gradient at length
10. The batch size is set to 60 for both SQuAD and
MARCO. The beam search width is set to 5. All
hyperparameters are tuned on the development set.



Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L
NQG++ (Zhou et al., 2018) 42.46 26.33 18.46 13.51 -
MPQG (Song et al., 2018) - - - 14.71 42.60
Answer-focused Position-aware model (Sun et al., 2018) 43.02 28.14 20.51 15.64 -
s2sa-at-mp-gsa (Zhao et al., 2018) 44.51 29.07 21.06 15.82 44.24
ASs2s (Kim et al., 2019) - - - 16.17 -
To the Point Context (Li et al., 2019) 44.40 29.48 21.54 16.37 44.73
QQP & QAP with BERT (Zhang and Bansal, 2019) - - - 18.65 46.76
QG-pg (Jia et al., 2020) 43.63 29.21 21.79 16.93 -
Graph2seq + RL + BERT (Chen et al., 2020) - - - 18.30 45.98
Syn-QG (Dhole and Manning, 2020) 45.55 30.24 23.84 18.72 -
Recurrent BERT (Chan and Fan, 2020) 48.29 33.12 24.78 19.14 47.07
Our Model 50.82 34.73 25.64 20.33 48.94

Table 1: Automatic evaluation results on the sentence-level SQuAD test set shared by (Zhou et al., 2018)

Models BLEU-4
s2sa-at-mp-gsa (Zhao et al., 2018) 16.02
Answer-focused Position-aware model (Sun et al., 2018) 19.45
QG with semantic matching (Ma et al., 2020) 20.46
QG-pg (Jia et al., 2020) 21.61
Graph2seq +RL+ BERT (Chen et al., 2020) 22.59
Our Model 23.87

Table 2: Automatic evaluation results on the sentence-
level MARCO test set

4 Results and Analysis

4.1 Main Results
Table 1 shows the experimental results of the
SQuAD sentence-level dateset. For fair compari-
son, we report the results on sentence-level dataset
excludes paragraph-level results (Dong et al., 2019;
Bao et al., 2020; Qi et al., 2020).

In terms of BLEU-4 regarded as the main evalua-
tion metric for text generation, our model yields the
best results, with 20.33. We achieve state-of-the-art
results on SQuAD for sentence-level QG.

We perform experiments on MARCO and
achieve the state-of-the-art results as shown in Ta-
ble 2. SQuAD and MARCO are built in different
ways. The questions in SQuAD are generated by
crowd-workers. However, questions in MARCO
are sampled from real user queries. The experimen-
tal results on two datasets validate the generaliza-
tion and robustness of our models.

4.2 Human Evaluation
To further assess the quality of generated ques-
tions, we perform a human evaluation to compare
our model with the strong baseline of Graph2seq
+RL+ BERT (Chen et al., 2020). We randomly se-
lect 100 samples from SQuAD and ask three anno-
tators to score these generated questions according
to three aspects:

Fluency: measures whether a question is gram-
matical and fluent;

Relevancy: measures whether the question is
relevant to the input context;

Answerability: indicates whether the question
can be answered by the given answer.

The rating score is set to [0, 5]. The evaluation
results are shown in Table 3. Our model receives
higher scores on all three metrics, indicating that
our generated questions have higher quality in dif-
ferent aspects.

Models Fluency Relavancy Answerability
baseline 3.81 3.69 3.74

our model 4.24 4.33 4.26
ground-truth 4.89 4.38 4.75

Table 3: Human evaluation results.

4.3 Ablation Study
As shown in Table 4, we perform an ablation study
to systematically assess the impact of different
model components (BERT, relational embedding,
IGND) on the SQuAD test-set.

We remove the relational embedding in the en-
coder, the BLEU-4 score of the original model
drops from 20.33 to 19.43, which indicates the
importance of relational embedding. This is ver-
ified by comparing the performance of original
w/o IGND model (19.01 BLEU-4 score) and other
Graph2seq model to use the syntactic information
baseline such as Graph2seq + RL + BERT (18.30
BLEU-4 score).

In addition, we remove the IGND and use the
normal attention-based mechanism. The BLEU-
4 score drops from 20.33 to 19.01 as shown in
Table 4. From this result, the IGND improves the
model performance. Moreover, the time cost of



the original model is only 1.1 times more than the
original w/o IGND model . In comparison to the
original model that scores 20.33, the original w/o
relational embedding and IGND drop significantly
(almost 2 in BLEU-4 score).

We find that the pre-trained BERT embedding
considerable impact the performance, and fine-
tuning BERT embedding improves the perfor-
mance, and demonstrates the power of large-scale
pre-trained language models.

Models BLEU-4
Original 20.33
- w/o BERT 19.37
- w/o relational embedding 19.43
- w/o IGND 19.01
- w/o relational embedding and IGND 18.42

Table 4: Ablation study on the SQuAD test set

4.4 Analysis of the Impact of Syntactic
Information in Encoder

To understand the impact of the syntactic informa-
tion, we calculated the words in the document that
occurred in the ground truth question and their total
attention score at the end of input attention layer as
revealed in Figure 3.

We compare three models: NQG++ (Zhou et al.,
2018), which ignore the syntactic information;
Graph2Seq + RL + BERT (Chen et al., 2020),
which use the syntactic structure information but ig-
nore the dependency relations. Our model uses syn-
tactic information that includes both structure in-
formation and dependency relations. In our model,
the average attention score is the highest, which
indicates that syntactic information can improve
the performance of encoder.

Figure 3: Average total attention score of words in the
document that occurred in the ground truth question
when using different model (SQuAD).

Figure 4: Average total copy probability score of words
in the the ground truth question when using different
model (SQuAD).

4.5 Analysis of the impact of IGND
To understand the impact of the IGND, we calcu-
lated for the words copied from the passage that
occurred in the ground truth question. Their prob-
ability score at the decoding step, as revealed in
Figure 4.

We compare with NQG++ (Zhou et al., 2018)
and Graph2Seq + RL + BERT (Chen et al., 2020).
Our model with IGND has the highest average copy
probability score, demonstrating that the IGND
can improve the performance of copy mode by
modeling previous information.

4.6 Sensitivity Analysis of Hyperparameters
We perform experiments on the Original model on
the SQuAD to study the effect of the number of
GNN hops. Figure 5 shows that our model is insen-
sitive to the GNN hops and can achieve reasonably
good results with various hops.

Figure 5: Effect of the number of GNN hops.

4.7 Case Study
We present some examples of questions generated
by our model. Furthermore, we present a pair of



Sentence: donald davies at the national physical laboratory, independently developed the same message routing methodology
as developed by baran.
Reference: what did donald davies develop ?
NQG++: who is donald davies ?
Graph2seq + RL + BERT: what did develop by baran?
Our Model: what did donald davies develop ?
Sentence: over time, wealth condensation can significantly contribute to the persistence of in equality within society
Reference: what has the highest impact on wealth accumulation and the resulting
income inequality ?
NQG++: What is the persistence of inequality ?
Graph2seq + RL + BERT: what can contribute to the equality within society ?
Our Model: what can contribute to the persistence of inequality within society ?

Table 5: We show a few examples that illustrate the quality of generated text given a passage under different models.
As we can see, incorporating dependency relations information helps the model identify which word is relevant to
answer and thus makes the generated questions more relevant and specific.

examples, which have the same input sentence as
shown in Table 5. We find that the question gen-
erated by NQG++ and Graph2Seq+RL+BERT
do not have the correct semantics, which copy the
wrong word from the passage and can not find the
right word as shown by Graph2seq + RL + BERT
in Example 2. In contrast, our model can generate
more answer-relevant questions than NQG++ and
Graph2Seq+RL+BERT baseline.

5 Related Work

Early works on QG (Mostow and Chen, 2009; Heil-
man and Smith, 2010) focused on the rule-based
approaches that rely on heuristic rules or hand-
crafted templates, with low generalizability and
scalability. Recent works adopted the attention-
based sequence-to-sequence neural model for QG
tasks, taking answer sentence as input and output
the question (Du et al., 2017), which proved to be
better than rule-based methods. (Zhou et al., 2018)
proposed the feature-enriched encoder to encode
the input sentence by concatenating word embed-
ding with lexical features as the encoder input, and
answer position are to inform the model to locate
the answer. To generate a question for a given an-
swer, (Sun et al., 2018; Kim et al., 2019; Song et al.,
2018) applied various techniques to encode answer
location information into an annotation vector cor-
responding to the word positions, thus allowing
for better quality answer focused questions. (Liu
et al., 2019; Chen et al., 2020) presented a syntac-
tic features based method to represent words in the
document and to decide what words to focus on
while generating the question. (Chen et al., 2020)
combined supervised and reinforcement learning in
the training to maximize rewards that measure ques-
tion quality. Furthermore, recent concurrent work

applied the large-scale language model pre-training
strategy for QG to achieve a new state-of-the-art
performance (Chan and Fan, 2020).

Most existing QG approaches are unable to
explicitly model the previously generated words.
However, we perceive that previous generated
words serve as auxiliary information in subsequent
generation.

6 Conclusion

In this study, we designed the IGND for QG to
alleviate the problem, which ignore the structure
information and copied words in generated words
at each decoding step. In addition, we proposed the
relational graph encoder to capture the dependency
relations information to improve the performance.
For the sentence-level QG task on SQuAD and
MARCO dataset, our method outperforms exist-
ing methods by a significant margin and achieves
the new state-of-the-art results. Future directions
include investigating more effective ways of utiliz-
ing previous generation information and exploit-
ing Graph2Seq models with GNN-based decoder
for question generation from structured data like
knowledge graphs or tables.
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