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Abstract

Aiming to generate a set of keyphrases,
Keyphrase Generation (KG) is a classical task
for capturing the central idea from a given
document. Based on Seq2Seq models, the
previous reinforcement learning framework on
KG tasks utilizes the evaluation metrics to fur-
ther improve the well-trained neural models.
However, these KG evaluation metrics such as
F1@5 and F1@M are only aware of the exact
correctness of predictions on phrase-level and
ignore the semantic similarities between simi-
lar predictions and targets, which inhibits the
model from learning deep linguistic patterns.
In response to this problem, we propose a new
fine-grained evaluation metric to improve the
RL framework, which considers different gran-
ularities: token-level F1 score, edit distance,
duplication, and prediction quantities. On the
whole, the new framework includes two re-
ward functions: the fine-grained evaluation
score and the vanilla F1 score. This framework
helps the model identifying some partial match
phrases which can be further optimized as the
exact match ones. Experiments on KG bench-
marks show that our proposed training frame-
work outperforms the previous RL training
frameworks among all evaluation scores. In
addition, our method can effectively ease the
synonym problem and generate a higher qual-
ity prediction. The source code is available at
https://github.com/xuyige/FGRL4KG.

1 Introduction

Keyphrase Generation (KG) is a classical but
challenging task in Natural Language Processing
(NLP), which requires automatically generating a
set of keyphrases. Keyphrases are short phrases
that summarized the given document. Because of
the condensed expression, keyphrases can be bene-
ficial to various downstream tasks such as informa-
tion retrieval (Jones and Staveley, 1999), opinion
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mining (Wilson et al., 2005; Berend, 2011), doc-
ument clustering (Hulth and Megyesi, 2006), and
text summarization (Wang and Cardie, 2013).

In recent years, end to end neural models have
been widely-used in generating both present and
absent keyphrases. Meng et al. (2017) intro-
duced CopyRNN, which consists of an attentional
encoder-decoder model (Luong et al., 2015) and a
copy mechanism (Gu et al., 2016). After that, rel-
evant works are mainly based on the sequence-to-
sequence framework (Yuan et al., 2020; Chen et al.,
2018, 2019). Meanwhile, F1@5 (Meng et al., 2017)
and F1@M (Yuan et al., 2020) are used for eval-
uating the model prediction. F1@5 computes the
F1 score with the first five predicted phrases (if the
number of phrases is less than five, it will randomly
append until there are five phrases). F1@M com-
pares all keyphrases (variable number) predicted
by the model with the ground truth to compute
an F1 score. Furthermore, Chan et al. (2019) uti-
lize the evaluation scores as the reward function to
further optimize the neural model throughout the
reinforcement learning (RL) approach.

However, the traditional F1-like metrics are on
phrase-level, which can hardly recognize some par-
tial match predictions. For example, supposing
that there is a keyphrase called “natural language
processing”, and one model provides a prediction
called “natural language generation” while another
model provides “apple tree”. Both of these two
phrases will get zero score from either F1@5 or
F1@M . But it is undoubtedly that “natural lan-
guage generation” should be a better prediction
than “apple tree”. Chan et al. (2019) propose a
method to evaluate similar words, but they only
consider abbreviations of keywords and use it only
during the evaluation stage.

In response to this problem, we propose a Fine-
Grained (FG) evaluation score to distinguish these
partial match predictions. First, in order to align
the F1 score, the exact correct predictions will ob-

https://github.com/xuyige/FGRL4KG


Encoder-
Decoder
Model

RL w/
FG Score

RL w/
F1 Score

RL w/
FB Score

Final Model

Figure 1: Flow chart of three reinforcement learn-
ing methods. The blue edges and red edges
are our proposed reinforcement learning methods
(catSeq*+2RL(FG) and catSeq*+2RL(FB)). The
green densely dotted line means the FB score. We use
some data generated by FG score to train the BERT
model, and the BERT model is used to compute the
FB score.

tain the FG score of one (e.g., natural language
processing mentioned above), and the absolutely
incorrect predictions will obtain the FG score of
zero (e.g., apple tree mentioned above). Second,
for partial match predictions like “natural language
generation”, FG score, our proposed metric, will
compare the prediction with the target in the fol-
lowing perspectives:(1) prediction orders in token-
level; (2) prediction qualities in token-level; (3)
prediction diversity in instance-level; (4) prediction
numbers in instance-level. The specific detail of
our proposed FG score can be seen in Section 3.3.

Based on previous works that use the reinforce-
ment learning technique and adopt the self-critical
policy gradient method (Rennie et al., 2017), we
propose a two-stage RL training framework for bet-
ter utilizing the advantages of FG score. As shown
in Figure 1, the black edges show the previous RL
process and the blue edges show our proposed two-
stage RL process. Our two-stage RL can be divided
into two parts: (1) First, we set FG score as the
adaptive RL reward and use RL technique to train
the model; (2) Second, we use F1 score as the re-
ward, which is the same as Chan et al. (2019). Fur-
thermore, in order to make FG score smoothly, we
carefully train a BERT (Devlin et al., 2019) model
to expand the original FG score from discrete to
continuous numbers (the green line in Figure 1).
This BERT scorer can predict a continuous FG
score, which can also be used in our two-stage RL
framework (the red edges in Figure 1).

Comparing with the F1 score, our FG score
has two main advantages: (1) FG score can rec-
ognize some partial match predictions, which can

better evaluate the quality of predictions in a fine-
grained dimension; (2) During the reinforcement
learning stage, FG score can provide a positive re-
ward to the model if it predicts some partial match
predictions, while the F1 score will return a neg-
ative reward of zero in this situation. Therefore,
in our proposed two-stage RL framework, the first
stage can help the model predict some partial match
phrases, and the second stage can further promote
the partial match phrases to the exact match phrases.
We conduct exhaustive experiments on keyphrase
generation benchmarks and the results show that
our proposed method can help better generating
keyphrases by improving both the traditional F1

score and the FG score. In addition to this, we
also conduct experiments to analyze the effective-
ness of each module.

Our main contributions are summarized as fol-
lows:

• We propose FG score, a new fine-grained
evaluate metric for better distinguish the pre-
dicted keyphrases.

• Base on our evaluation metric, we propose a
two-stage reinforcement learning method to
optimize the model throughout a better direc-
tion.

• We train a BERT-based scorer whose cor-
pus come from previous training. The scorer
can effectively perceive the similarity of two
keyphrases on semantic level.

• We conduct exhaustive experiments and anal-
ysis to show the effectively of our proposed
FG metric.

2 Related Work

In this section, we briefly introduce keyphrase gen-
eration models and evaluation metrics.

2.1 Keyphrase Generation Models

In KG task, keyphrases can be categorized into two
types: present and absent, depending on whether
it can be found in the source document or not. In
recent years, end to end neural model has been
widely-used in generating both present and absent
keyphrases. Meng et al. (2017) introduced Copy-
RNN, which consists of an attentional encoder-
decoder model (Luong et al., 2015) and a copy



mechanism (Gu et al., 2016). After that, rele-
vant works are mainly based on the sequence-to-
sequence framework. More recently, Chen et al.
(2018) leverages the coverage (Tu et al., 2016)
mechanism to incorporate the correlation among
keyphrases, Chen et al. (2019) enrich the generat-
ing stage by utilizing title information, and Chen
et al. (2020) proposed hierarchical decoding for
better generating keyphrases. In addition, there
are some works focus on keyphrase diversity (Ye
et al., 2021), selections (Zhao et al., 2021), differ-
ent module structure (Xu et al., 2021), or linguistic
constraints (Zhao and Zhang, 2019).

2.2 Keyphrase Generation Metrics
Different to other generation tasks that need to
generate long sequences, KG task only need to
generate some short keyphrases, which means n-
gram-based metrics (e.g., ROUGE (Lin, 2004),
BLEU (Papineni et al., 2002)) may not suitable for
evaluations. Therefore, F1@5 (Meng et al., 2017)
and F1@M (Yuan et al., 2020) are used to evaluate
the keyphrases which is predicted by models. This
evaluation score is also used as an adaptive reward
to improve the performance through reinforcement
learning approach (Chan et al., 2019).

3 Methodology

3.1 Problem Definition
In this section, we will briefly define the keyphrase
generation problem. Given a source document
x, the objective is to predict a set of keyphrases
P = {p1, p2, . . . , p|P|} to maximum match the
ground-truth keyphrases Y = {y1, y2, . . . , y|Y|},
where |P| and |Y| are the number of the pre-
dicted keyphrases and the number of ground truth
keyphrases respectively. Both source document
x = [x1, ..., x|x|] and a keyphrase in the set of tar-
get keyphrases yi = [yi,1, ..., yi,|yi|] are words se-
quences, where |x| and |yi| represent the length of
source sequence x and the i-th keyphrase sequence
yi, respectively.

3.2 Seq2Seq Model with Minimizing
Negative Log Likelihood Training

In this section, we descibe the Seq2Seq model
with attention (Luong et al., 2015) and copy mech-
anism (Gu et al., 2016), which is our backbone
model.

Encoder-Decoder Model with Attention
We first convert the source document

x = [x1, x2, ..., x|x|] to continuous embed-
ding vectors e = [e1, e2, ..., e|x|]. Then we adopt a
bi-directional Gated-Recurrent Unit (GRU) (Cho
et al., 2014) as the encoder to obtain the hidden
state H = Encoder(e).

Then another GRU is adopted as the decoder. At
the step t, we compute the decoding hidden state
St as folow:

St = Decoder(et−1, st−1) (1)

In addition, we incorporate the attention mecha-
nism (Luong et al., 2015) to compute the contextual
vector u which represents the whole source docu-
ment at step t:

ut =

T∑
j=1

αtjHj (2)

where αtj represents the correlation between the
source document at position j and the output of the
decoder at step t.

Copy Mechanism Because there are a certain
number rare words in the document, traditional
Seq2Seq models perform pooly when predicting
these rare words. Thus, we introduce the copy
mechanism (Gu et al., 2016) to alleviate the out-
of-vocabulary (OOV) problem. The probability of
producing a token contains two parts: the proba-
bility for generation pg and probability for copy
mechanism pc. pg is estimated by a standard lan-
guage model based on the global vocabulary, and
pc is estimated by the copy distribution based on
local vocabulary which only contain one case. The
definition of pc is:

pc (yi,t|yi,<t,H) =
1

Z

∑
j:xj=yi,t

eω(xj), yi,t ∈ χ

(3)

where χ represents the set of all rare words in the
source document and Z is used for normalization.

Minimizing Negative Log Likelihood Training
Finally, we train all parameters in the model θ by
minimizing the negative log likelihood loss:

L(θ) = −
∑

logP (yi,t|yi,<t,H) (4)

3.3 Fine-Grained Score
Because traditional KG methods only care predic-
tions on phrase-level in evaluate stage, they ignore



both information on token-level and instance-level.
Not only in the traditional Seq2Seq model, there
are also in RL training. The environment also calcu-
lates the reward (recall or F1-score) only in phrase-
level, which ignores the overall performance of
prediction. Due to this problem, the training pro-
cess may go in the wrong direction (e.g. Model
will give a zero score for a phrase that has more
than half right). Thus, we propose a new metric:
Fine Grained Score (FG), which considers both
token-level and instance-level information. It is
divided into the following four parts.

3.3.1 Phrase Similarity on Token Level
For the comprehensive calculation later, we first
compute the similarity score between a predicted
phrase and a ground-truth phrase on token-level.
We use edit distance and token-level F1 score as
our metric.

Obviously, in order to get token-level similarity,
Guaranteed the correctness of phrase on token-level
is important. So token-level F1 score is necessary.
Given a predicted phrase pi ∈ P , we use F1(pi, yj)
represent the score for i-th predicted phrase and
j-th ground-truth phrase.

Because the order of the words in a phrase is
also important, we introduce the edit distance to
measure the sequential difference between the two
phrases. Particularly, the edit distance ED(pi, yj)
denotes how many times should modify pi to yj at
least, where one time only can modify one word
and modify operation only contains three opera-
tions: add, delete, change. We use dynamic pro-
gramming to calculate the edit distance as follow:

Dm
k =


min(Dm−1

k−1 , D
m−1
k + 1, Dm

k−1 + 1)

if pi,k = yj,m

min(Dm−1
k−1 + 1, Dm−1

k + 1, Dm
k−1 + 1)

if pi,k 6= yj,m
(5)

where Dm
k denotes minimum number of modifi-

cations for transforming first k token in pi to first
m token in yj . k ∈ [1, |pi|] and m ∈ [1, |yj |].
Because the more modifications there are, the less
similar the two sequences are, the ED(pi, yj) score
can be formulated as follow:

ED(pi, yj) = 1−
D
|yj |
|pi|

max{|pi|, |yj |}
(6)

And for a instance (x, Y , P), we compute score
list scoreL as follow:

scoreLi = max
yj
{ED(pi, yj) + F1(pi, yj))

2
},

(7)

where F1 is token-level F1 score. i ∈ [1, |P|] and
j ∈ [1, |Y|]. And we use a maximum-match score
to a particularly predicted phrase.

3.3.2 Global Generation Quality on Instance
Level

In Section 3.3.1, we proposed a method to compute
the phrase similarity on token level. In this section,
we will further consider the generation quality on
instance level.

There are many factors can influent the global
generation quality, but we select the most represen-
tative factors: diversity and the prediction quanti-
ties. Therefore, we use a Repetition Rate Penalty
and Generation Quantity Penalty for the FG
score, which is shown in Algorithm 1.

Algorithm 1 Global Generation Quality Penalty
Input:

The set of ground-truth keyphrases, Y;
The set of predicted keyphrases P;
The score list of prediction, scoreL

Output:
reward for an instance;

1: // Repetition rate penalty
2: initial two dicts dictY and dictP
3: for all keyphrase yi in Y do
4: for all word yij in yi do
5: dictY [yij ] = dictY [yij ] + 1
6: reverse sort P and scoreL by key scoreL
7: for i = 0; i < |P|; i++ do
8: for all word pij in pi do
9: if pij in dictY then

10: dictP [pij ] + +
11: if dictP [pij ] > dictY [pij ] then
12: scoreL[i] = 0

13: finalscore = sum(scoreL)
|P|

14: // Generatation quantity penalty
15: corr = 1.0− (|Y|−|P|)2

max(|Y|,|P|)2
16: finalscore = finalscore ∗ corr
17: return finalscore

The first factor is the repetition rate penalty. This
operation means that there is a punishment if the
model predicts similar keyphrases greater equal



than twice, which can also reduce the duplication.
We first count the words that appear in the ground
truth. Then we sort the prediction and the score
list in reverse according to the score. After that we
iterate the prediction list and count the words that
appear in the predictions. Once a word appears in
the predictions twice more than that in the ground
truth, we claim this token “repetitive”. Based on
this, the corresponding phrase is labelled as invaild.
Lastly we will compute an average score of all
phrases as a normalization, which can be used to
represent the score of the corresponding instance.

The second factor is the generation quantities.
The model will obtain the highest score if it predicts
only one most simple phrase because it is an exact
match result in most cases. Therefore, we add a
generation coefficient to solve this problem.

3.4 Continuous Scorer

In fact, although the FG metric includes the token-
level and instance-level information for keyphrase,
deeper semantic information is not considered. As
the introduction says, when “natural language pro-
cessing” is ground truth, our FG metric will give
“natural language understanding” and “natural lan-
guage generation” a same score. But “natural lan-
guage understanding” and “natural language gen-
eration” have different semantics. In order to solve
this problem, we incorporate pre-train model (e.g.,
BERT) to train a continuous scorer which denotes
the similarity of two keyphrases.

Because many tuples (pi, yj , scoreLi) are gen-
erated when we compute the FG score, we screen
portions as training corpus for BERT. We con-
catenate the pi and yj as ([CLS] pi [SEP] yj
[SEP]) to a sequence as input for BERT scorer,
where [CLS] and [SEP] is the same as the vanilla
BERT (Devlin et al., 2019). In the training stage,
scoreLi score is used as the supervised target.

After get the BERT scorer, we can easily eval-
uate the similarity of two keyphrase. Similar to
the Eq (7), for a instance (x, Y , P), we compute
BERT-based score list scoreLB as follow:

scoreLBi = max
yj
{BERT(pi, yj)}. (8)

where i ∈ [1,P] and j ∈ [1,Y]. Finally, we also
put scoreLBi into Algorithm 1 to compute finally
BERT-based score (also called FB score).

3.5 Reinforcement Learning

In this section, we will briefly describe our pro-
posed two-stage reinforcement learning method.

3.5.1 Vanilla RL Training
Reinforcement learning has been widely applied to
text generation tasks, such as machine translation
(Wu et al., 2018), summarization (Narayan et al.,
2018), because it can train the model towards a
non-differentiable reward. Chan et al. (2019) incor-
porate reinforce algorithm to optimize the Seq2Seq
model with an adaptive reward function. They for-
mulate keyphrase generation as follow. At the time
step t = 1, . . . , T , the agent produces an action (to-
ken) ŷt sampled from the policy (language model)
P (ŷt|ŷ<t), where ŷ<t represent the sequence gen-
erated before step t. After generated t-th tokens,
the environment ŝt will gives a reward rt(ŷ<=t,Y)
to the agent and updates the next step with a new
state ŝt+1 = (ŷ<=t,x,Y). We repeat the above
operations until generated all token. Typically, the
recall score or the F1 score are used as the reward
function.

3.5.2 Two-Stage RL Training
In the vanilla RL training, the reward is polarized
in the phrase level: one for an exact match predic-
tion and zero for other situations, which means a
partial match phrase receives the same reward as an
exact mismatch phrase. In order to help to recog-
nize these partial match phrases during the training
stage, we propose a two-stage RL training method.
In the first stage, we use our new metric (FG score
or FB score) as a reward to train the model. Then
we apply the vanilla RL (using F1 score) training
as the second training stage. The whole RL training
technique is similar to Chan et al. (2019), while we
re-write the reward function.

4 Experiment

4.1 Dataset

We evaluate our model on three public scien-
tific KG dataset, including Inspec (Hulth and
Megyesi, 2006), Krapivin (Krapivin et al., 2009),
KP20k (Meng et al., 2017). Each case from these
datasets consists of the title, abstract, and a set of
keyphrases. Following the previous work (Chen
et al., 2020), we concatenate the title and abstract
as input document, and use the set of keyphrases as
labels. The same as the previous works above, we
use the largest dataset, KP20k, to train the model,



Model Inspec Krapivin KP20k
F1@M F1@5 FG F1@M F1@5 FG F1@M F1@5 FG

catSeq(Yuan et al., 2020) 0.262 0.225 0.381 0.354 0.269 0.352 0.367 0.291 0.371
catSeqD(Yuan et al., 2020) 0.263 0.219 0.385 0.349 0.264 0.350 0.363 0.285 0.369
catSeqCorr(Chen et al., 2018) 0.269 0.227 0.391 0.349 0.265 0.360 0.365 0.289 0.374
catSeqTG(Chen et al., 2019) 0.270 0.229 0.391 0.366 0.282 0.344 0.366 0.292 0.369
SenSeNet(Luo et al., 2020) 0.284 0.242 0.393 0.354 0.279 0.355 0.370 0.296 0.373
ExHiRD-h(Chen et al., 2020) 0.291 0.253 0.395 0.347 0.286 0.354 0.374 0.311 0.375

Utilizing RL (Chan et al., 2019)

catSeq+RL(F1) 0.300 0.250 0.382 0.362 0.287 0.360 0.383 0.310 0.369
catSeqD+RL(F1) 0.292 0.242 0.380 0.360 0.282 0.357 0.379 0.305 0.377
catSeqCorr+RL(F1) 0.291 0.240 0.392 0.369 0.286 0.376 0.382 0.308 0.377
catSeqTG+RL(F1) 0.301 0.253 0.389 0.369 0.300 0.344 0.386 0.321 0.370

Ours

catSeq*+RL(FG) 0.252 0.201 0.460 0.359 0.228 0.413 0.365 0.290 0.440
catSeq*+RL(FB) 0.254 0.200 0.463 0.354 0.230 0.416 0.366 0.291 0.444
catSeq*+2RL(FG) 0.308 0.266 0.425 0.375 0.304 0.389 0.391 0.327 0.381
catSeq*+2RL(FB) 0.310 0.267 0.430 0.374 0.305 0.390 0.392 0.330 0.383

Table 1: Result of present keyphrase prediction on three datasets. “RL” denotes that a model is trained by one-stage
reinforcement training. “2RL” denotes that a model is trained by two-stage RL training. The notation in parentheses
denotes the reward function in first RL training stage. All second reward function in two-stage RL training is F1

score. “catSeq*” represents that we select the best model of four different catSeq-based baseline models. FB
indicates that the reward is computed by the continuous BERT scorer. The underline numbers represent the best
result in previous work. FG is the metric we propose.

and use all datasets to evaluate the performance of
our model. After same data pre-processing as Chan
et al. (2019), KP20k dataset contains 509,818 train-
ing samples, 20,000 validation samples, and 20,000
testing samples.

4.2 Evaluation Metrics

Most previous work (Meng et al., 2017; Chen et al.,
2018, 2019) cutoff top k (which k is a fixed num-
ber) predicted keyphrases to calculate metrics such
as F1@5 and F1@10. Due to the different num-
ber of keyphrases in different samples, Yuan et al.
(2020) propose a new evaluation metric, F1@M ,
which compares all keyphrases predicted with the
ground-truth and compute the F1 score. We evalu-
ate the performance of our model using three differ-
ent metrics, F1@5, F1@M , and FG (ours). After
computing every samples’ scores, we apply marco
average to aggregate the evaluation scores. The
same as Chan et al. (2019), we append random
wrong keyphrases to prediction until it reaches five
or more, because our method generates diverse
keyphrases that usually less than five predictions.

4.3 Baseline Model

Following the name set of the previous works(Chan
et al., 2019; Chen et al., 2020), we use four gen-
erative model trained under minimize the neg-
ative log likelihood loss, include catSeq(Yuan
et al., 2020), catSeqD(Yuan et al., 2020), catSe-

qCorr(Chen et al., 2018), catSeqTG(Chen et al.,
2019), ExHiRD-h(Chen et al., 2020). Because re-
inforcement learning is applied to our method, we
also compare four reinforced model (Chan et al.,
2019) include catSeq+RL, catSeqD+RL, catSeq-
Corr+RL, catSeqTG+RL. Each reinforced model
is correspond to previous model applied RL ap-
proach. In this paper, our RL framework trains four
models for comparison:

• catSeq*+RL(FG) and catSeq*+RL(FB)
denotes that one-stage reinforcement learn-
ing training with FG-score reward or BERT-
based reward.

• catSeq*+2RL(FG) and catSeq*+2RL(FB)
denotes that two-stage RL training. Two meth-
ods use FG-score and BERT-based reward in
first stage respectively, and both use F1 re-
ward in second score which is same as Chan
et al. (2019).

5 Result and Analysis

5.1 Present Keyphrase Prediction
In this section, we evaluate the performance of
our models on present keyphrase predictions using
three different metrics, F1@M , F1@5, and FG,
respectively. Table 1 shows the result of all baseline
models and our proposed four models. From the
result, we summarized our observations as follow:



Model Phrase-level Result Token-level Result
F1@M F1@5 FG tF tP tR

catSeq*+2RL(FG) 0.391 0.330 0.383 0.494 0.493 0.495
w/o ED 0.387 0.325 0.370 0.494 0.491 0.498
w/o TF 0.389 0.327 0.372 0.485 0.483 0.487

w/o RRP 0.390 0.328 0.375 0.497 0.494 0.500
w/o GNP 0.388 0.320 0.372 0.489 0.493 0.486

Table 2: Ablation study of catSeq*+2RL(FG) on KP20k dataset. ED means Edit Distance, TF means Token-level
F1 score (see Section 3.3.1), RRP means Repetition Rate Penalty, GNP means Generated Number Penalty (see
Section 3.3.2). “w/o” means “without”. tF , tP , tR means token-level metric.

(1) Our proposed methods achieve the state-of-
the-art result on KG generation, which proves that
it is necessary to deal with the semantic similarities
between predictions and targets.

(2) In the phrase level, the reward returned by
the vanilla RL method (with F1 score) is polar-
ized. Assuming that there are two partial match
predictions in the baseline model (catSeq*), one of
them may change into an exact match keyphrase
while another may change into an exact mismatch
keyphrase after the vanilla RL method. This phe-
nomenon will increase the F1 score, but only a
similar FG score can be obtained. Therefore, the
vanilla RL method hardly improves the quality of
generation, although it improves the F1@5 and
F1@M score.

(3) We observe that the one-stage RL training
(catSeq*+RL(FG)) induces the performance drop
on both F1@M and F1@5, especially on F1@5, but
it improves the performance on FG. The reason
is that the number of predicted keyphrases is less
than vanilla RL training. We predict 3.2 present
keyphrases on average, and the vanilla RL training
predicts 3.8 when ground truth is 3.3. We conclude
that the number of our predictions is more reason-
able comparing with the vanilla RL methods.

(4) Models with two-stage RL training far out-
perform those with only one-stage RL training on
F1@M and F1@5 metrics. Moreover, it shows that
the vanilla RL training with F1 score can effec-
tively improve F1@5 and F1@M after first stage
training because first stage training improves the
token-level quality of prediction.

(5) We observe that using BERT as a reward
scorer makes the models perform better than using
FG, indicating that the reward score produced by
BERT is usually more accurate.

5.2 Ablation Study

To further examine the benefits that each com-
ponent of the FG score brings to the perfor-

mance, we conduct an ablation study on the
catSeq*+2RL(FG) model. Our proposed meth-
ods are evaluated on the largest dataset KP20k.
The results are shown in Table 2.

First, removal of edit distance score (w/o ED)
does not affect model’s performance on token-level
but leads to performance drop most on phrase-level.
Thus, it proves that edit distance is the most crucial
in FG scores. Moreover, after we get rid of token-
level F1 (w/o TF), we observe that the phrase-level
performance does not decrease much, but token-
level performance decrease much. Therefore, we
prove the effectiveness of token-level F1 for token-
level quality.

Compared with catSeq*+2RL(FG), removal of
the repetition rate penalty (w/o RRP) will cause
the performance drop consistently on phrase-level,
which indicates that RRP has a great effect on
phrase-level F1@5. Furthermore, for token-level
results, we observe that the token-level recall
and token-level F1 score decreases somewhat, but
token-level precision gets a promotion. From pre-
dicted results, we also obtain some observations
when the lack of repetition rate penalty. There are
a large number of keyphrase such as “natural pro-
cessing”, “natural language”, “natural natural nat-
ural”, when the ground-truth keyphrase is “natural
language processing”. The situation leads to high
token-level accuracy but low overall performance.

Finally, removal of generated number penalty
(w/o GNP) will mainly cause the phrase-level
F1@5 to go down. We find that model tends to gen-
erate a small number of keyphrases as the predicted
results because generating multiple keyphrases will
reduce the reward. According to the definition
of F1@5, if the model can not generate enough
five keyphrases, we should randomly add a mis-
take keyphrase to five. Thus, if we generate more
keyphrases appropriately, F1@5 will definitely get
a boost. So in this situation, F1@5 will decrease a
lot. From what has been discussed above, all the



Figure 2: Case study for catSeq+RL(F1), catSeq+RL(FG), catSeq*+2RL(FG) and catSeq*+2RL(FB). The red
words represent the present keyphrases, the blue words represent the absent keyphrase. The green words represent
the synonym with ground truth. The yellow words represent the duplicate part of a keyphrase. The underlined
words represent correctly words on token-level.
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Figure 3: The number distribution of the FG and the proportion distribution of token-level F1 score on test
dataset by three different training process. catSeq+RL(F1) denotes that one-stage RL training with F1-score reward.
catSeq*+RL(FG) denotes that one-stage RL training with FG-score reward. catSeq*+2RL(FG) denotes that two-
stage RL training with FG and F1-score reward.

modules in the FG score have their contribution.

5.3 Case Study

To better understand what benefits our proposed
method brings, we present a case study with a doc-
ument sample. As shown in the Figure 2, we com-
pare the predictions generated by vanilla RL model
(catSeq+RL(F1)), two-stage RL training with FG
score (catSeq*+2RL(FG)) and two-stage RL train-
ing with BERT scorer (catSeq*+2RL(FB)) on
a same document sample. Overall, our two ap-
proaches have improved relative to the baseline
model on FG scorer, and it shows that our overall
generation quality has been improved.

From the case, we have three observations: First,
catSeq*+2RL(FG) and catSeq*+2RL(FB) cor-
rectly predict the keyphrase “linear arithmetic
logic” while catSeq+RL(F1) predicts a “linear re-
gression” which gets only one word right. It indi-
cates that our two methods can improve the pre-
diction quality on token-level and then finally im-

prove the performance on phrase-level. Second,
catSeq+RL(F1) predicts two similarly keyphrases
“proposition satisfiability” and “proposition satisfi-
ability experiment”, which our two methods do not.
It fully demonstrates that our repetitive punishment
plays an important role, which makes the predic-
tions become diverse. Third, catSeq*+2RL(FB)
generates a keyphrase “integrated decision pro-
cess”, which is synonym for ground truth “inte-
grated decision procedures”. It indicates that the
BERT scorer can effectively perceive the semantics
of keyphrases, which guides the training process of
reinforcement learning.

5.4 Generative Quality Analysis

In this section, we analyze the prediction
quality generated by vanilla RL model
(catSeq+RL(F1)), one-stage RL training with
FG score (catSeq*+RL(FG)) and two-stage RL
training with FG score (catSeq*+2RL(FG)) on
instance-level and token-level respectively. We



both divided the FG score and token-level F1

score into five parts. We conduct detailed analysis
in the following.

In Figure 3a, we use the distribution of FG
scores to analyze the generation quality on
instance-level. By comparing the distribution of
catSeq+RL(F1) and catSeq*+RL(FG), we find
that catSeq*+RL(F1) has a larger proportion when
FG score is low and catSeq*+RL(FG) has a
larger proportion when FG score is high. It
shows that using the FG score as a reward can
improve the overall quality of predictions. Es-
pecially when score = 1.0 (which means all
keyphrase is correctly in this instance), the num-
ber of catSeq*+RL(FG) is nearly three times
as large as catSeq+RL(F1). When comparing
catSeq*+2RL(FG) with catSeq+RL(F1), we ob-
tain the similar conclusion as before. It is proved
that the overall quality of the generated keyphrases
can be improved after the first stage of reinforce-
ment learning training.

In Figure 3b, due to different number keyphrases
predicted by the model, we use the distribution of
the proportion of the token-level F1 score to an-
alyze the generation quality on token-level. By
comparing the distribution of catSeq+RL(F1) and
catSeq*+RL(FG), we find that catSeq*+RL(F1)
has a larger proportion when token-level F1 is low
and catSeq*+RL(FG) has a larger proportion when
token-level F1 is high. It indicates that the model
can generate more keyphrases with more correct
words throughout the reinforcement learning train-
ing with the FG score. (e.g. When groud truth
is “natural language processing”, catSeq+RL(F1)
generates “natural X X” and catSeq*+RL(FG) gen-
erates “natural language X”. “X” means the inac-
curacy word). This improvement also benefits to
catSeq*+2RL(FG).

5.5 Human Evaluation for Continuous
Scorer

As shown in Section 3.4, our continuous BERT-
based scorer is an implicit and automatic. In this
section we manually evaluate it to verify its ef-
fectiveness. We randomly selected 1000 pairs of
matching predicted and ground-truth keyphrases in
the training of reinforcement learning with BERT-
based rewards and save a BERT score at the same
time. Especially, we do not select the keyphrase
pairs whose score is below to 0.05 or above to 0.95,
because these pairs are either completely unrelated

Annotator Pearson Spearman

People 1 0.894 0.884
People 2 0.881 0.867
People 3 0.874 0.856
People 4 0.889 0.873
People 5 0.883 0.875

Total 0.884 0.870

Table 3: The results of manually evaluation on Pearson
and Spearson correlation coefficient.

or exactly the same. We randomly divide the data
into five samples and ask five different people to
rate each pair of keyphrases (Scores range: 0.0, 0.1,
... , 0.9, 1.0). Both of the annotators have no less
than a bachelor degree, which have the enough abil-
ity of evaluating the quality of model predictions.
Then we used Pearson correlation coefficient and
Spearman correlation coefficient to measure the
effect of the BERT Scorer. The human evaluation
results are shown in Table 3. From the results, we
can conclude that the scorer produced by BERT
has high quality, and hence, it can act as a helpful
signal during our training process.

6 Conclusion

In this paper, we utilize a two-stage reinforcement
learning training framework with a fine-grained
evaluation metric. We propose the FG-score or the
continuous BERT-score as the reward in the first-
stage training, which improves the generation qual-
ity on token-level and then beneficial to the second-
stage training. Experiments on KG benchmarks
show the effectiveness of our proposed method,
and then we also demonstrated the contribution of
each module in the FG function. In addition, we
evaluate the performance of BERT-based scorer
manually. In future work, we will consider improv-
ing the training of BERT scorer’s performance and
making the two-stage RL training more effective.
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Anette Hulth and Beáta Megyesi. 2006. A study on
automatically extracted keywords in text categoriza-
tion. In ACL 2006, 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
Proceedings of the Conference, Sydney, Australia,
17-21 July 2006, page 537–544. The Association for
Computer Linguistics.

Steve Jones and Mark S Staveley. 1999. Phrasier:
a system for interactive document retrieval using
keyphrases. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 160–
167.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases ex-
traction. Technical report, University of Trento.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yichao Luo, Zhengyan Li, Bingning Wang, Xi-
aoyu Xing, Qi Zhang, and Xuanjing Huang. 2020.
SenSeNet: Neural keyphrase generation with docu-
ment structure. arXiv preprint arXiv:2012.06754.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421. The
Association for Computational Linguistics.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
keyphrase generation. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
582–592. Association for Computational Linguis-
tics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 1747–1759. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/I11-1130/
https://www.aclweb.org/anthology/I11-1130/
https://doi.org/10.18653/v1/p19-1208
https://doi.org/10.18653/v1/p19-1208
https://doi.org/10.18653/v1/d18-1439
https://doi.org/10.18653/v1/d18-1439
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.3115/1220175.1220243
https://doi.org/10.3115/1220175.1220243
https://doi.org/10.3115/1220175.1220243
https://arxiv.org/abs/2012.06754
https://arxiv.org/abs/2012.06754
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/n18-1158
https://doi.org/10.18653/v1/n18-1158


Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 1179–1195. IEEE Computer So-
ciety.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Lu Wang and Claire Cardie. 2013. Domain-
independent abstract generation for focused meeting
summarization. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1395–1405,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Process-
ing, pages 347–354, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, Brussels, Belgium, Octo-
ber 31 - November 4, 2018, pages 3612–3621. Asso-
ciation for Computational Linguistics.

Yige Xu, Yichao Luo, Yicheng Zou, Zhengyan Li,
Qi Zhang, Xipeng Qiu, and Xuanjing Huang.
2021. Searching effective transformer for seq2seq
keyphrase generation. In Natural Language Pro-
cessing and Chinese Computing - 10th CCF Inter-
national Conference, NLPCC 2021.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021. One2Set: Generating diverse
keyphrases as a set. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Vir-
tual Event, August 1-6, 2021, pages 4598–4608. As-
sociation for Computational Linguistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Peter Brusilovsky, Daqing He, and Adam

Trischler. 2020. One size does not fit all: Gener-
ating and evaluating variable number of keyphrases.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 7961–7975. Associa-
tion for Computational Linguistics.

Jing Zhao, Junwei Bao, Yifan Wang, Youzheng Wu, Xi-
aodong He, and Bowen Zhou. 2021. SGG: learning
to select, guide, and generate for keyphrase genera-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2021, Online, June 6-11, 2021,
pages 5717–5726. Association for Computational
Linguistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporating
linguistic constraints into keyphrase generation. In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 5224–5233. Association for
Computational Linguistics.

https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.18653/v1/p16-1008
https://doi.org/10.18653/v1/p16-1008
https://www.aclweb.org/anthology/P13-1137/
https://www.aclweb.org/anthology/P13-1137/
https://www.aclweb.org/anthology/P13-1137/
https://www.aclweb.org/anthology/H05-1044/
https://www.aclweb.org/anthology/H05-1044/
https://doi.org/10.18653/v1/d18-1397
https://doi.org/10.18653/v1/d18-1397
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2021.naacl-main.455
https://doi.org/10.18653/v1/2021.naacl-main.455
https://doi.org/10.18653/v1/2021.naacl-main.455
https://doi.org/10.18653/v1/p19-1515
https://doi.org/10.18653/v1/p19-1515

