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Abstract
Character-level Chinese named entity recognition
(NER) that applies long short-term memory
(LSTM) to incorporate lexicons has achieved
great success. However, this method fails to fully
exploit GPU parallelism and candidate lexicons
can conflict. In this work, we propose a faster
alternative to Chinese NER: a convolutional neural
network (CNN)-based method that incorporates
lexicons using a rethinking mechanism. The
proposed method can model all the characters and
potential words that match the sentence in parallel.
In addition, the rethinking mechanism can address
the word conflict by feeding back the high-level
features to refine the networks. Experimental
results on four datasets show that the proposed
method can achieve better performance than both
word-level and character-level baseline methods.
In addition, the proposed method performs up to
3.21 times faster than state-of-the-art methods,
while realizing better performance.

1 Introduction
The task of named entity recognition (NER) involves the
determination of entity boundaries and the recognition of
categories of named entities, which is a fundamental task
in the field of natural language processing (NLP). NER
plays an important role in many downstream NLP tasks,
including information retrieval [Chen et al., 2015], relation
extraction [Bunescu and Mooney, 2005], question answering
systems [Diefenbach et al., 2018], and other applications.
Compared with English NER, Chinese named entities are
more difficult to identify due to their uncertain bound-
aries, complex compositions, and NE definitions within the
nest [Duan and Zheng, 2011]. Hence, one intuitive way to
perform Chinese NER is to first perform word segmentation
and then apply word sequence labeling [Yang et al., 2016;
He and Sun, 2017].

However, gold-standard segmentation is rarely available
in NER datasets, and word segmentation errors negatively
impact the identification of named entities [Peng and Dredze,
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Figure 1: Example of word character lattice. RNN-based methods
must recurrently encode each character with potential words in the
lexicon, which reduces their speed. In addition, they may suffer
from conflicts between potential words.

2015; He and Sun, 2016]. The development of ways to
use lexicon features to better leverage word information for
NER has attracted research attention [Passos et al., 2014;
Zhang and Yang, 2018]. In particular, to exploit explicit word
information, Zhang and Yang [2018] introduced a variant of
LSTM (lattice-structured LSTM) that encodes all potential
words that match a sentence. Because of its rich lexicon
information, the lattice LSTM model has achieved state-of-
the-art results on various datasets.

Although previous work using RNNs to incorporate
lexicons has achieved great success, these methods continue
to have difficulty with two issues. First, RNN-based
methods fail to fully exploit GPU parallelism because of
the recurrent structure, which limits their computational
efficiency [Strubell et al., 2017]. Specifically, lattice
LSTM [Zhang and Yang, 2018] employs double recurrent
transition computation across the length of the input, one
for each character in a sentence and the other for matched
potential words in the lexicon. As such, their speeds are
limited. Second, they have difficulty dealing with conflicts
between potential words being incorporated in the lexicon:
one character may correspond to couples of potential words
in the lexicon, and this conflict can misguide the model such
that it predicts different labels, as shown in Figure 1. Because
of the nature of the sequential processing in RNNs, it is
difficult to determine which word is correct based only on the
previous inputs. For example, given part of the sentence “广
州市长隆(Guangzhou Chimelong),” an RNN-based model
would be uncertain whether the character “长” is part of the
word “市长(Major)” or “长隆(Chimelong).” The matching
of the words “市长(Major)” and “长隆(Chimelong)” would
guide the character “长” to be identified as ‘O’ and ‘B-GPE,’
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Figure 2: Schematic of CNN model incorporating lexicons with a
rethinking mechanism.

respectively. More seriously, this conflict among words is
ubiquitous in Chinese NER, and these ambiguities cannot be
settled without reference to the whole-sentence context and
high-level information [Ma et al., 2014].

In this paper, we present a novel convolutional neural
network with a rethinking mechanism. The first issue is
handled using a CNN to process the whole sentence as well
as all the potential words in parallel. The intuition is that
when the window size of the convolution operation is set to 2,
then all the potential words can easily fuse into corresponding
positions [Kim, 2014]. As shown in Figure 2, words with
certain lengths correspond to distinct positions in certain
layers. In this manner, characters coupled with potential
words can be processed in parallel. The second issue is
addressed by the use of a rethinking mechanism [Li et al.,
2018]. Most existing Chinese NER models learn features
using only a feedforward structure. They have no chance
to modify conflicting lexicon information after seeing the
whole sentence. By adding a feedback layer and feeding
back the high-level features [Ma et al., 2014], this rethinking
mechanism can leverage the high-level semantic to refine
the weights of embedded words and address the conflicts
between potential words. Experimental results on four NER
datasets show that the proposed method can achieve better
performance than other baseline methods.

In summary, our contributions are three-fold:
1) We propose a novel CNN structure for incorporating

lexicons into Chinese NER, which effectively accelerates the
model training by its use of parallelism.

2) We apply a rethinking mechanism to tackle the conflict
between potential words in the lexicon, and the proposed
model can leverage the high-level semantic to identify the
correct words.

3) Experimental results on four datasets demonstrate that
the proposed model can achieve better performance, and
performs up to 3.21 times faster than state-of-the-art methods.

2 Related Work
Our work is inspired by three lines of research: enhancing
character-level Chinese NER through lexicon information,
improving computational efficiency by parallelism, and re-
fining networks using a rethinking mechanism.

Chinese NER with lexicon. To date, using neural
networks for NER has been the dominant approach [Ma

and Hovy, 2016]. For Chinese NER, there have been
explicit discussions comparing word-based and character-
based methods, which have shown that due to the lim-
ited performance of current Chinese word segmentation,
character-based name taggers can outperform their word-
based counterparts [Zhang and Yang, 2018]. Zhang and
Yang [2018] exploit an RNN-based lattice structure to
simultaneously model characters and corresponding words
in a lexicon, which prevents segmentation errors. However,
lattice LSTM suffers from inefficiency and word conflict. Our
approach extends these ideas from the parallel modeling of
characters with potential words and a rethinking mechanism.
Hence, our method is more efficient and effective.

Improving NER computational efficiency. In gen-
eral, end-to-end CNNs in NLP have mainly been used
for text classification [Kim, 2014]. For sequence labeling
tasks, CNNs have been mainly used for low-level feature
extraction[Ma and Hovy, 2016] as input for alternative
architectures. Recently, Strubell et al. [2017] proposed
iterated dilated convolutional neural networks (ID-CNNs) for
sequence labeling with parallel computation. However, ID-
CNNs applied a dilated window that skips over every dilation,
which makes adding lexicon information impractical. In this
work, we propose a novel CNN architecture that can process
all the characters and lexicon information in parallel.

Refining networks with a rethinking mechanism. Pre-
vious attempts to use a rethinking mechanism in neural
networks have been made in image classification to tackle
issues of occlusion and noise [Li et al., 2018]. Li et al. [2018]
used the output posterior possibilities of a CNN to refine its
intermediate feature maps. We extend these concepts from
refining networks to tackle conflict among words.

3 Lexicon Rethinking CNNs
This paper presents a novel lexicon rethinking convolutional
neural network (LR-CNN). The proposed model can process
all of the characters in a sentence, as well as all of the
potential words that match the sentence in parallel. By adding
a feedback layer and feeding back the top-layer features, the
rethinking mechanism can leverage the high-level semantic to
refine the weights of embedded words and tackle the conflicts
between potential words.

3.1 Lexicon-Based CNNs
CNNs have been shown to be effective for Chinese NER
[Strubell et al., 2017]. We propose the use of CNNs to
encode the sentences and lexicons in parallel. We denote
the input sentence as C = {c1, c2, · · · , cM}, with character
vocabulary V , where cm ∈ Rd is the m-th character
embedding. Then C ∈ Rd×M denotes the sentence matrix.
The potential words in the lexicon that match a sequence of
characters can be formulated as wl

m = {cm, · · · , cm+l−1};
as such, the first letter of the word is cm and the length of the
word is l.

Take the sentence in Figure 2 as an example. The sentence
consists of five potential words (e.g., w2

1 =广州, w3
1 =广州

市, w2
3 =市长). Given the sentence C and potential matching

words w, we adopt character-level CNNs to encode the



character features and attention modules to incorporate the
lexicon features. The CNNs apply multiple filters H ∈ Rd×2

with a window size of 2 to obtain the bigram information and
stack the multiple layers to obtain the multigram information,
as follows:

C2
m = tanh(〈C1[∗,m : m+ 1],H1〉+ b1)

Cl
m = tanh(〈Cl−1[∗,m : m+ 1],Hl−1〉+ bl−1),

(1)

where C[∗,m : m + 1] is the m-to-(m + 1)-th column in C
and 〈A,B〉 = Tr(ABT ) is the Frobenius inner product. We
regard the character embedding layer as the first layer C1.
Similarly, the feature in the l-th layer Cl

m represents the l
gram feature.

From the perspective of the combination of characters, the l
gram feature Cl

m corresponds to the word wl
m (Figure 2). To

incorporate the lexicon feature effectively, we use the vector-
based attention [Chen et al., 2018] to combine the l gram
feature with the word feature, as follows:

i1 = σ(WiC
l
m + Uiw

l
m + bi)

f1 = σ(WfC
l
m + Ufw

l
m + bf )

u1 = tanh(WuC
l
m + Uuw

l
m + bu)

i′1, f
′
1 = softmax(i1, f1)

X l
m = i′1 � u1 + f ′1 �Cl

m,

(2)

whereW , U and b are the parameters of the attention module.
� refers to the element wise production, and σ represents a
sigmoid operation. In this way, the model can process the
characters and potential words in parallel.

3.2 Refining Networks with a Rethinking
Mechanism

Although using an attention module is effective to incorporate
lexicons, it still has difficulty dealing with the conflicts
between the potential words. The model incorporating the
potential words in the lower layers cannot refer to the words
in the higher layers, due to the hierarchical structure of CNN.
Hence, the effective use of high-level features to tackle the
ambiguity among the potential words is still a key issue [Ma
et al., 2014].

In this work, we treat the features at the top layer of CNN,
XL

m, as the high-level features. We then use these features
to readjust the weights of the lexicon attention module by
adding a feedback layer to each CNN layer, as follows:

i2 = σ(W ∗i C
l
m + U∗i w

l
m + ViX

L
m + b∗i )

f2 = σ(W ∗fC
l
m + U∗fw

l
m + VfX

L
m + b∗f )

r2 = σ(WrC
l
m + Urw

l
m + VrX

L
m + br)

u2 = tanh(W ∗uC
l
m + U∗uw

l
m + b∗u)

i′2, f
′
2, r
′
2 = softmax(i2, f2, r2)

X l′

m = i′2 � u2 + f ′2 �Cl
m + r′2 �XL

m,

(3)

where W , U , V and b are the parameters of the rethinking
module. To avoid overfitting, W ∗, U∗ and b∗ are the reused
parameters of the attention module included to reduce the
number of parameters. With high-level features participating

in the reweighting of the word vectors and CNN features, the
model can learn to address the conflicts between the potential
words.

Consider the case in Figure 2, where the word vector
“市长(Major)” is a misleading input that can give rise to
an incorrect label decision. Without the features of “广州
市(Guangzhou City)” and “长隆(Chimelong)” in the higher
layer, the model may focus more on the misleading word
vector. However, the rethink vector from the upstream layer
can decrease the weight of the word vector “市长(Major)” in
the output features, so as to correct the label decision.

Through the CNN encoder and lexicon attention module,
the model obtains the respective l gram features X l

m within
each layer of the model. These feature values correspond to
the multi-scale l-grams, of which some are redundant (i.e.,
unigram X1

m, bigram X2
m, . . . , and L-gram XL

m). In this
work, we propose the use of the multi-scale feature attention
[Wang et al., 2018] to adaptively selects the features of
different scales in each position of a sentence, as follows:

slm =

D∑
d=1

X l′

m[d], αl
m =

exp(slm)∑L
l=1 exp(s

l
m)

Xatt
m =

L∑
l=1

αl
mX

l′

m.

(4)

After being processed by the multi-scale attention module,
the final representation Xatt = [Xatt

1 , Xatt
2 , · · · , Xatt

M ]
would be fed into the CRF layer for the prediction.

3.3 Predicting NER with CRF
Suppose that y = {y1, · · · , yM} represents a sequence of
labels for sentence C, and Y(C) denotes the set of possible
label sequences for C. The probability of the label sequence
y is:

p(y|Xatt;W, b) =

∏M
m=1 ψm(ym−1, ym,X

att)∑
y′∈Y(C)

∏M
m=1 ψm(y′m−1, y

′
m,X

att)
,

(5)
where ψi(ym−1, ym,X

att) = exp(WmXatt + bm) is the
potential function and Wm and bm are the weight vector and
bias, corresponding to label pair (ym−1, ym), respectively.

During the training, we optimize the parameters of the
model to maximize the following conditional likelihood:

L(W,b) =
∑

log p(y|C;W,b), (6)

where y is the true labels of sentence C, and W,b are the
parameters of the model. During the decoding process, we
search for the label sequence y∗ with the highest conditional
probability:

y∗ = argmax
y∈Y(C)

p(y|C;W,b) (7)

4 Experimental Setup
In this section, we describe the datasets that include the
newswire and social media domains. We then detail the
baseline methods applied, including the word- and character-
based neural Chinese NER under different settings. Finally,
we detail the configuration of the proposed model.



Datasets Type Train Dev Test

OntoNotes Sentence 15.7k 4.3k 4.3k
Char 491.9k 200.5k 208.1k

MSRA Sentence 46.4k - 4.4k
Char 2169.9k - 172.6k

Weibo Sentence 1.4k 0.27k 0.27k
Char 73.8k 14.5 14.8k

Resume Sentence 3.8k 0.46 0.48k
Char 124.1k 13.9k 15.1k

Table 1: Statistics of datasets.

4.1 Datasets
We evaluate the proposed method on four datasets, including
OntoNotes [Weischedel et al., 2011], MSRA [Levow, 2006],
Weibo NER [Peng and Dredze, 2015; He and Sun, 2016], and
Resume NER [Zhang and Yang, 2018]. The splitting methods
follow those in [Zhang and Yang, 2018].

The OntoNotes and MSRA are the newswire domain,
where gold-standard segmentation is available in the training
data. For OntoNotes, gold segmentation is also available for
the development and test data; however, no segmentation is
available for the MSRA test data. The Weibo and Resume
NER come from social media. There is no segmentation in
the Weibo and Resume datasets. A description of the datasets
is presented in Table 1.

We use the pretrained character embeddings and lexi-
con embeddings1 trained using word2vec [Mikolov et al.,
2013], over the automatically segmented Chinese Giga-
Word2. The lexicon consists of 704.4k words, containing
5.7k single-character, 291.5k two-character, 278.1k three-
character words, and 129.1k other words.

4.2 Comparison Methods
As baselines for comparison, we applied several classic and
state-of-the-art methods on the four datasets. In addition, to
verify the effectiveness of the proposed method, we compare
the word- and character-level methods that utilize the bichar,
softword, and lexicon features.

For the dataset without gold segmentation, we first train
the open source segmentation toolkit3 on the training data.
We then use it to automatically segment the datasets. Finally,
we apply the word-level NER methods on these segmented
datasets to evaluate their performances, which are denoted as
Auto seg. For the dataset with gold segmentation, we directly
apply the word-level NER methods, which are denoted as
Gold seg. We also evaluate the character-level methods
without using segmentation information, which are denoted
as No seg. All the methods evaluated are as follows:

LSTM. A bi-directional LSTM [Hochreiter and Schmid-
huber, 1997] is used to obtain a left-to-right hidden state

−→
h w

i

and a right-to-left hidden state
←−
h w

i , which are concatenated
for the NER prediction.

1https:// github.com/jiesutd/LatticeLSTM.
2https://catalog.ldc.upenn.edu/ LDC2011T13
3https://github.com/lancopku/PKUSeg-python

CNN. We apply a standard CNN [Kim, 2014] structure on
the character or word sequence to obtain its multiple gram
representation for the NER prediction.

Word-level model + char + bichar. To extract the
morphological and combination information from the words,
we first concatenate the character embedding and bigram
embedding to represent the character xc

m. We then use a
bi-directional LSTM on the character sequence to obtain the
character-level features. Finally, we augment the word-level
model by combining word embedding with the character-
level features as: xw

m = [wm ⊕ xc
m].

Character-level model + bichar + softword. We use
the BMES scheme for representing the segmentation. In
addition, we use the same bigram feature bm as a word-level
model. Then, the character feature can be represented as:
xc
m = [cm ⊕ bm ⊕ seg(cm)].
Dilated CNN. Dilated CNN [Strubell et al., 2017] stacks

several of the CNN layers that applied a dilated window skips
over every dilation. This method achieves great performance
in the English NER task.

Lattice LSTM. Lattice LSTM [Zhang and Yang, 2018]
can model the characters in sequence and explicitly leverages
word information through Gated recurrent cells, which can
avoid segmentation errors. The lattice LSTM achieved state-
of-the-art performance on the four datasets.

4.3 Hyper-Parameter Settings
For all four of the datasets, we used the Adamax [Kingma
and Ba, 2014] optimization to train our networks. The initial
learning rate was set at 0.0015, with a decay rate of 0.05.
To avoid overfitting, we employed the dropout technique
(50% dropout rate) on the character embeddings, lexicon
embeddings and each layer of the CNNs. The character em-
beddings and lexicon embeddings were initialized by a pre-
trained embedding and then fine-tuned during the training.
The character embedding size and lexicon embedding size
were set to 50. For the biggest dataset, MSRA, we used five
layers of CNNs with an output channel size of 300. For the
other datasets, we used four layers of CNNs with an output
channel size of 128. We used early stopping, based on the
performance on the development set. Our code are released
at https://github.com/guitaowufeng/LR-CNN.

5 Results and Analysis
In this section, we detail the performance of the proposed
and baseline models. We present the results of a series of
experiments to demonstrate the effectiveness of the lexicon
and rethinking mechanism.

5.1 Method Comparison
For OntoNotes, gold-standard segmentation is available
in the entire dataset. No segmentation is available for
the MSRA test sections, nor is the Weibo and Resume
datasets. As a result, we study the oracle situations where
gold segmentation is given on OntoNotes and evaluate the
automatic/no segmentation situations on the other three
datasets.

https://github.com/guitaowufeng/LR-CNN


input Models P R F1

Gold seg

Yang et al. 2016 65.59 71.84 68.57
Yang et al. 2016∗† 72.98 80.15 76.40
Che et al. 2013∗ 77.71 72.51 75.02
Wang et al. 2013∗ 76.43 72.32 74.32
Word-level LSTM 76.66 63.60 69.52

+ char+bichar 78.62 73.13 75.77
Word-level CNN 66.84 62.99 64.86

+ char+bichar 68.22 72.37 70.24
Word-level Dilated CNN 76.90 63.42 69.51

Auto seg

Word-level LSTM 72.84 59.72 65.63
+ char+bichar 73.36 70.12 71.70

Word-level CNN 54.62 55.20 54.91
+ char+bichar 64.69 65.09 64.89

Word-level Dilated CNN 74.60 56.31 64.18

No seg

Char-level LSTM 68.79 60.35 64.30
+ bichar+ softword 74.36 69.43 71.89

Char-level CNN 56.78 60.99 58.81
+ bichar + softword 59.60 65.14 62.25

Char-level Dilated CNN 59.42 57.43 58.41
Lattice LSTM 76.35 71.56 73.88
LR-CNN 76.40 72.60 74.45

Table 2: Main results on OntoNotes.

Models P R F1
Chen et al. 2006 91.22 81.71 86.20
Zhang et al. 2006∗ 92.20 90.18 91.18
Zhou et al. 2013 91.86 88.75 90.28
Lu et al. 2016 - - 87.94
Dong et al. 2016 91.28 90.62 90.95
Lattice LSTM 93.57 92.79 93.18
LR-CNN 94.50 92.93 93.71

Table 3: Main results on MSRA.

OntoNotes. Table 24 illustrates a variety of settings for
the word- and character-based Chinese NER. In the gold or
automatic segmentation settings, the char and bichar features
can enrich the word representations in the word-level models
to obtain a better performance than those without char and
bichar features. In particular, these models can achieve results
that are competitive to the state-of-the-art [Che et al., 2013;
Wang et al., 2013]. However, due to the influence of
the word segmentation errors, the models on the automatic
segmentation dataset would perform worse than those on the
gold segmentation dataset. In addition, the gold segmentation
is not available in most datasets. Hence, the previous work
explores the character-based methods to avoid the need for
word segmentation. The LR-CNN outperforms character-
level lattice LSTM by 0.57% in F1 score. It also results in
an almost 3 percent improvement over the LSTM with bichar
and softword features. In addition, because the processing
of the characters and lexicons are conducted in parallel, LR-
CNN has an efficiency advantage (Table 6).

MSRA/Weibo/Resume. Tables 3, 4, and 5 present the
comparisons between the classic and state-of-the-art methods

4In Table 2, 3 and 4, the results with ∗ refer to the model with
external labeled data for semi-supervised learning. those with †
mean that the model also uses discrete features.

Models NE NM Overall
Peng and Dredze 2015 51.96 61.05 56.05
Peng and Dredze 2016∗ 55.28 62.97 58.99
He and Sun 2016 50.60 59.32 54.82
He and Sun 2017∗ 54.50 62.17 58.23
Lattice LSTM 53.04 62.25 58.79
LR-CNN 57.14 66.67 59.92

Table 4: Main results on Weibo NER. NE, NM and Overall denote
F1-scores for named entities, nominal entities (excluding named
entities) and both, respectively.

Models P R F1
Word-level LSTM 93.72 93.44 93.58
+ char+ bichar 94.07 94.42 94.24

Char-level LSTM 93.66 93.31 93.48
+ bichar+ softword 94.53 94.29 94.41

Char-level CNN 91.58 94.05 92.80
+ bichar + softword 92.69 94.85 93.75

Lattice LSTM 94.81 94.11 94.46
LR-CNN 95.37 94.84 95.11

Table 5: Main results on Resume NER.

on the MSRA, Weibo, and Resume datasets. The existing
classic methods explore the rich handcrafted features [Chen
et al., 2006; Zhang et al., 2006; Zhou et al., 2013],
character embedding features [Lu et al., 2016], segmentation
embedding features [Peng and Dredze, 2016], and radical
embedding features [Dong et al., 2016]. He and Sun 2017
leverage the cross-domain and semi-supervised data for the
Chinese NER. Our LR-CNN model significantly outperforms
these models. In addition, with a better manner to incorporate
the lexicons, LR-CNN also outperforms the strong baseline
lattice LSTM on all of the datasets.

5.2 Efficiency Advantage
Our LR-CNN not only achieves better F1 score results than
the baseline models, but it is also faster. Table 6 lists the
relative decoding time on all four of the development sets, as
compared to the lattice LSTM. We report the decoding time
using the same batch size for each method.

Without the CRF, the LR-CNN decodes up to 3.21 times
faster than the lattice LSTM. With Viterbi decoding, the gap
closes somewhat, but the LR-CNN still has better efficiency
(i.e., about an average of 1.91 times faster than the lattice
LSTM). The LR-CNN with CRF is even faster than the lattice
LSTM without CRF. In addition, we study the degree of the
decline in model performance when the models get rid of
the CRF layer. We find that the F1 score of the LR-CNN
decreases, on average, by 5.75% on the four datasets. In
contrast, the lattice LSTM decreases by 6.10%, showing that
the LR-CNN is a better structure for the token encoder.

5.3 Influence of Sentence Length
To investigate the influence of the different sentence lengths,
we analyze the performance of the LR-CNN and lattice
LSTM on the OntoNotes dataset. The dataset is split into



Models OntoNotes MSRA Weibo Resume
F1 Speedup F1 Speedup F1 Speedup F1 Speedup

W/ CRF Lattice LSTM 73.88 1× 93.18 1× 58.79 1× 94.46 1×
LR-CNN 74.45 2.23× 93.71 1.57× 59.92 2.41× 95.11 1.44×

W/O CRF Lattice LSTM 64.74 1.14× 85.38 1.12× 52.38 1.21× 93.43 1.24×
LR-CNN 69.48 2.94× 84.14 1.95× 53.33 3.21× 93.94 2.43×

Table 6: Relative test-time speed of different models with CRF (w/ CRF) and without CRF (w/o CRF).
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Figure 3: F1 and speed against sentence length. Bat/s refers to the
number of batches can be processed per second.

Models OntoNotes MSRA Weibo Resume
LR-CNN 74.45 93.71 59.92 95.11
- Rethink 73.09 93.58 57.86 95.04
- Lexicon 65.31 86.81 49.58 94.27
- Lexicon - Rethink 59.86 87.81 50.75 94.47

Table 7: An ablation study of the proposed model.

five parts according to the sentence length. To rule out the
impact of the CRF, we evaluate the models by removing the
CRF layer. Figure 3 demonstrates the F1 score and processing
speed on the different sentence lengths.

The results reveal that the LR-CNN outperforms the lattice
LSTM on all of the datasets with different sentence lengths.
In particular, the F1 score for LR-CNN is nearly 12%
greater than that of lattice LSTM when the sentence length
is less than 20 characters. Hence, LR-CNN has a much
greater advantage than the lattice LSTM in dealing with short
sentences. In addition, we evaluate the processing speed
of the sentences with different lengths. We find that with
the sentence length increases, the speed of the LR-CNN
is relatively stable, while the speed of the lattice LSTM
decreases substantially. In particular, when processing the
sentence of which the length is greater than 100, LR-CNN is
5 times faster than the lattice LSTM.

5.4 Ablation Study
To study the contribution of the main components in the LR-
CNN, we ran an ablation study on all four datasets. The
results are reported in Table 7. Overall, we find that:

(1) Lexicons play an important role in character-level Chi-
nese NER. Compared with models incorporating lexicons,
the performance of the model without lexicons is seriously
degraded, and the F1 score decreases by 9% on the Weibo
dataset.

(2) Rethinking mechanisms can further improve the per-
formance of the models with lexicons, because the rethinking
mechanisms can tackle the conflicts between the potential

Sentence 会议八月九日在汕头大学举行
The meeting was held at Shantou University on August 9th.

Gold seg 会议 八月 九日 在 汕头大学 举行
The meeting, August, 9th, was, Shantou University, held

Lattice LSTM O O O O O O O O O O O O O
会议八月九日在汕头大学举行

LR-CNN w/o rethink O O O O O O O B E B E O O (GPE)
会议八月九日在 汕头 大学 举行

LR-CNN O O O O O O O B M M E O O (GPE)
会议八月九日在 汕头大学 举行

Sentence 中国内陆大省四川
TSichuan, China’s inland province.

Gold seg 中国 内陆 大省 四川
China, inland, province, TSichuan

Lattice LSTM B M M M M M M E (ORG)
中国内陆大省四川

LR-CNN w/o rethink B E O B M E B E (GPE)
中国内 陆大省 四川

LR-CNN B E O O O O B E (GPE)
中国 内陆 大省 四川

Table 8: Examples of OntoNotes dataset. Characters with blue and
red highlights represent incorrect and correct entities, respectively.

words that match the same characters. Table 8 illustrates
two examples where the rethinking mechanism successfully
tackles the conflict words and makes correct predictions.

(3) The rethinking mechanism may benefit models without
lexicons. Although the lexicons are not available, the LR-
CNN - Lexicon is 5% better than itself without the rethinking
mechanism in the F1 score on OntoNotes dataset.

6 Conclusion
In this work, we propose a novel convolutional neural
network to incorporate lexicons with a rethinking mechanism.
This network can model all the characters coupled with the
potential words that match the sentence in parallel. To
solve the conflicts between the potential words, the proposed
model can refine the networks by adding a feedback layer to
feed back the high-level features. We evaluate the proposed
model on four Chinese NER datasets. The experimental
results illustrate that the proposed method can significantly
improve the performance when compared with that of the
other baseline approaches. In addition, the proposed method
is up to 3.21 times faster than the state-of-the-art methods.
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