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Abstract
Word representation is a key component in neural-
network-based sequence labeling systems. Howev-
er, representations of unseen or rare words trained
on the end task are usually poor for appreciable
performance. This is commonly referred to as the
out-of-vocabulary (OOV) problem. In this work,
we address the OOV problem in sequence labeling
using only training data of the task. To this end, we
propose a novel method to predict representations
for OOV words from their surface-forms (e.g.,
character sequence) and contexts. The method is
specifically designed to avoid the error propagation
problem suffered by existing approaches in the
same paradigm. To evaluate its effectiveness, we
performed extensive empirical studies on four part-
of-speech tagging (POS) tasks and four named
entity recognition (NER) tasks. Experimental
results show that the proposed method can achieve
better or competitive performance on the OOV
problem compared with existing state-of-the-art
methods.

1 Introduction
Word representation (or embedding) is a foundational aspect
in many state-of-the-art sequence labeling systems [Ma and
Hovy, 2016; Zhang and Yang, 2018]. However, natural
language yields a Zipfian distribution [Zipf, 1949] over
words. This means that a significant number of words (in
the long tail) are rare. To control model size, a sequence
labeling system often constrains the training vocabulary to
only cover the top N frequent words within the training
set. Those words not covered by the training vocabulary
are called OOV words. Learning representations for OOV
words is challenged since the standard end-to-end supervised
learning methods require multiple occurrences of each word
for better generalization. Many works [Ma and Hovy, 2016;
Madhyastha et al., 2016] have proved that performance on
sequence labeling usually drops a lot when encountering
OOV words. This is commonly referred to as the OOV
problem, which we are to address in this work.

Over the last few years, many methods have been proposed
to deal with the OOV problem. These approaches can be

roughly divided into two categories: (1) pretraining word
representations on very large corpora of raw text [Mikolov
et al., 2013; Pennington et al., 2014; Peters et al., 2018];
(2) further exploiting training data of the task. In a data-
rich domain, the first category of methods can often bring
considerable improvement to the models that are trained
with random initialized word vectors [Devlin et al., 2018].
However, the approach can be criticized when encounter the
extremely data-hungry situation. Obtaining sufficient data
may be difficult for low-resource domains, e.g. in technical
domains and bio/medical domains [Delėger et al., 2016].

Therefore, in this work, we highlight methods of the
second category. A popular practice of this category is to
represent all OOV words with a single shared embedding,
which is trained on low-frequency words within the training
set, and then assigned to all OOV words at testing time.
However, this essentially heuristic solution is inelegant, as
it conflates many words thus losing specific information of
the OOV words. Another popular practice is to obtain the
word representation from its surface-form (e.g., character
sequence) [Ling et al., 2015]. This practice is successful
at capturing the semantics of morphological derivations
(e.g. “running” from “run”) but puts significant pressure
on the encoder to capture semantic distinctions amongst
syntactically similar but semantically unrelated words (e.g.
“run” vs. “rung”). Therefore, most state-of-the-art
sequence labeling systems will combine the surface-form
representation with an unique embedding to represent the
word. This again introduces the OOV problem to the systems.

Recently, a new paradigm of the second direction, which
we refer to as the teacher-student paradigm, are being studied.
Methods of this paradigm address the OOV problem in two
steps. In the first step, they train a supervised model (also
called the teacher network in this work) to perform label
prediction for those within-vocabulary words to obtain their
task-specific word representations. In the second step, they
train (or heuristically construct) a predicting model (also
called the student network) to predict the representation of
a word from its surface-form [Pinter et al., 2017], context
[Lazaridou et al., 2017], or the both [Schick and Schütze,
2018]. The training object of the student network is usually
to reconstruct representations of those within-vocabulary
words. At testing time, when encountering OOV words
within a sentence, they first use the student network to predict



representations for those OOV words. Then, based on the
generated OOV representations, they use the teacher network
to perform label prediction.

Intrinsically, methods of the teacher-student paradigm can
be seen as pipelines, with the teacher and student networks
being two cascaded components of the pipeline. Though
methods of this paradigm has achieved notable success on
several tasks, they suffer from the typical error propagation
problem of the pipeline paradigm [Caselli et al., 2015;
Bojarski et al., 2016], since the auxiliary reconstruction
object used for training the student network is not guaranteed
to be fully compatible with the supervised object used for
training the teacher network.

In this work, we propose a novel method of the teacher-
student paradigm, which is specifically designed to address
the error propagation problem. The main difference of
this method from existing ones is the training of the
student network. Instead of reconstructing representations
of those within-vocabulary words, we train the student
network to predict word representations that can achieve good
performance on the supervised task. Training signal of the
student network is directly backpropagated by the parameter-
fixed teacher network. This way, we connect learning of the
student network with the teacher network, thus avoiding the
error propagation from the prediction of word representation
using the student network to the label prediction using the
teacher network. We explore applicability of this method to
eight sequence labeling tasks in part-of-speech tagging (POS)
and named entity recognition (NER). Empirically studies on
those tasks show that our proposed method can achieve better
or comparative performance on OOV words over existing
methods in this paradigm.

Contributions of this work can be summarized as follows:
(i) We propose a novel method of the teacher-student
paradigm to address the OOV problem in sequence labeling
using only training data of the task. It can avoid the error
propagation problem suffered by existing approaches in the
same paradigm. (ii) We performed experimental studies on
eight part-of-speech tagging and named entity recognition
tasks, and achieved better or comparative performance on
OOV words over several existing state-of-the-art methods.
Source code of this work is available at https://
github.com/v-mipeng/TaskOOV.

2 Typical Methods of the Teacher-Student
Framework

In this section, we highlight some typical methods of the
teacher-student framework. The first representative work of
this framework was proposed by Lazaridou et al., [2017].
In that work, they proposed to obtain the representation for
an OOV word w through summation over representations of
within-vocabulary words occurring in its contexts C(w):

vw(w) =
1

c(w)

∑
C∈C(w)

∑
w′∈C∩V

ew(w′). (1)

Here, C(w) denotes the set of contexts that contain w, V is
the training vocabulary, c(w) =

∑
C∈C(w) |C ∩V| is the total

number of within-vocabulary words in C(w), and ew(·) is the
embedding function defined on within-vocabulary words.

Following this idea, Khodak et al., [2018] further applied a
linear transformation A to the resulting embedding:

v̂w(w) = Avw(w), (2)

to get the representation of w. To determine the form of
A, they trained it on those within-vocabulary words with the
training object being to minimize the reconstruction error of
an randomly selected within-vocabulary word w:

L(w) = d (ew(w), v̂w(w)) , (3)

where d(·, ·) defines the distance between two embeddings,
e.g., Euclidean distance function.

In this line, Schick and Schutze, [2018] proposed to model
both the context and surface-form (subword n-grams) of OOV
words to get their representations:

ṽw(w) = αv̂w(w) + (1− α)vc(w), (4)

where vc(w) is a word representation modeling from the
surface of w, and α ∈ [0, 1] is a single learnable parameter or
a gate generated from v̂w(w) and vc(w) as illustrated in §3.3.

In general, these methods differ from our proposed method
in two points. First, they represent an OOV word w in
different contexts with a consistent representation, while we
relax the representation of the same word to be different in
different contexts. Second, they train the student network on
the auxiliary reconstruction object, while we directly train it
on the supervised object used for training the teacher network.
Of course, the first difference can be easily addressed by
adjusting Eq. (1) to:

vw(w|C(w)) =
1

|C(w)|
∑

w′∈C(w)∩V

ew(w′), (5)

where C(w) denotes a single context of w. According
to our experience, this adjustment can generally improve
performance of the method in sequence labeling. Therefore,
we applied this adjustment to all compared methods of the
teacher-student paradigm. Thus, the main difference between
our proposed method and existing works is the training
strategy of the student network.

3 Methodology
Generally speaking, the method contains a teacher and a
student network. The teacher network is first trained to
perform the supervised task. Then, the student network
(i.e., the representation predict layer) is trained to generate
appropriate representations for words from their contexts
and surface-forms. The quality of the generated word
representation v(w) is measured by the parameter-fixed
teacher network (the copied sequence modeling and CRF
loss layers), i.e., the training signal of the student network
is backpropagated by the teacher network. At testing time,
it first uses the student network to generate representations
for OOV words and then uses the teacher network to perform
label prediction.



3.1 Notation
Throughout this work, we denote Ω the word space and
V the training vocabulary. A sentence consisting of a
sequence of words is denoted as X = {w1, · · · , wn} ∈
Ω and its corresponding label sequence is denoted as
Y = {y1, · · · , yn} ∈ Y . The context of a word wi

given its corresponding sentence X is denoted as X\i =
{w1, · · · , wi−1, wi+1, · · · , wn}, and X<i,j> refers to the
sub-sequence {wi, · · · , wj}. The teacher network is denoted
as T and the student network is denoted as S. In addition, let
f be a function defined on Ω, we denote f(X) a shorthand of
{f(w1), · · · , f(wn)}.

3.2 Train the Teacher Network
The teacher network is used to perform label prediction in the
sequence labeling system. It can be of arbitrary architecture
suitable for the task. Because the main focus of this work
is to deal with the OOV problem instead of designing a
superior supervised model, in this work, we tried the typical
CNN-based and LSTM-based architectures [Huang et al.,
2015] to implement the teacher network. Briefly, this
architecture represents a word w with the concatenation of an
unique dense vector (embedding) ew(w) and a vector ec(w)
modeled from its character sequence using a character-level
convolutional neural network (CNN) [Kim, 2014]:

e(w) = [ew(w)⊕ ec(w)], (6)
where ⊕ denotes the concatenation operation. The corre-
sponding sentence representation e(X) is fed as input into
a bidirectional long-short term memory network (BiLSTM)
[Hochreiter and Schmidhuber, 1997] or a three-layer CNN
network [Kim, 2014] with kernel size set to 3 to model
context information of each word, obtaining a hidden
representation (not the word embedding) h(wi|X) for each
word given X. On top of the BiLSTM-based or CNN-based
sequence modeling layer, it uses a sequential conditional
random field (CRF) [Lafferty et al., 2001] to jointly decode
labels for the whole sentence:

p(Y|X;θT ) =

∏m
t=1 φt(yt−1, yt|X)∑

Y′∈Y
∏m

t=1 φt(y
′
t−1, y

′
t|X)

(7)

where φt(y′, y|X) = exp(wT
y′,yh(wt) + by′,y), wy′,y and

by′,y are trainable parameters corresponding to label pair
(y′, y), and θT denotes the whole parameters of the teacher
network. The training loss of the teacher network is then
defined by:

LT =

N∑
i=1

log p(Yi|Xi;θT ), (8)

where N is the training sentence number. This network is
trained on all words occurring in the training set. After
that, we fix its parameters during the training of the student
network described in the following.

3.3 Train the Student Network
The student network models both surface-form and context
information of a word for generating its representation. These
two information resources have been demonstrated to be
complementary to each other by Schick and Schütze, 2018.

Model Surface-form
The surface-form representation of a wordw is obtained from
its character sequence w = {c1, c2, · · · , cn} ∈ Vc, where Vc
is the character vocabulary. Specifically, following the work
of [Schick and Schütze, 2018], we first pad the character
sequence with special start and end characters c0 = 〈s〉,
cn+1 = 〈e〉 and obtain its up k-gram set:

G(w) = ∪km=1 ∪n+2−m
i=0 {ci, · · · , ci+m−1}. (9)

Then, we define the surface-form embedding of w to be the
average of all its up k-gram embeddings:

vform(w) =
1

|G(w)|
∑

g∈G(w)

Wngram(g), (10)

where Wngram denotes an embedding lookup table for n-
grams, which are trainable parameters of the student network.

Model Context
For modelling the context of wordwi, we apply a bidirection-
al long-short term memory network (BiLSTM) on its context
word sequence X\i. Here, we consider application of this
practice in two different situations. In the first situation, there
is only one OOV word within a sentence X. While in the
second situation, there are multiple OOV words within X.

When there is only one OOV word wi within a sentence
X, the task-specific representations for the rest words are all
known, and we can directly apply BiLSTM to X\i to predict
representation for wi. Specifically, we use the forward LSTM
to model the sequence from the beginning of X to wi−1:

−→
h (wi|X) =

−−−−→
LSTM(e(X<1,i−1>)) (11)

and use the backward LSTM to model the sequence from the
end of X to wi+1 in a reverse order:

←−
h (wi|X) =

←−−−−
LSTM(e(X<i+1,n>)). (12)

The forward and backward hidden representations are con-
catenated to form the context representation of wi given X:

vcontext(wi|X) = [
−→
h (wi|X)⊕

←−
h (wi|X)], (13)

where ⊕ denotes the concatenation operation.
When there are multiple OOV words within a sentence,

for a given OOV word wi ∈ X, the representations of
some other words in X\i are also unknown. Therefore,
we cannot directly apply the BiLSTM to X\i to get its
predicted representation. To address this problem, we
propose to iteratively predict representations for the multiple
OOV words within a sentence. Let vtcontext(wi|X) denote
the predicted representation of wi given X at the tth

iteration with v0context(wi|X) = 0. At the (t + 1)th

iteration, for predicting the representation of wi, we apply the
BiLSTM to its tth iteration context vtcontext(X\i), obtaining
vt+1

context(wi|X). This process repeats for all OOV words
to finish the (t + 1)th iteration. The iteration proceeds
till t reaches a fix value K, obtaining the final predicted
representation for each OOV word. According to our
experience, it is appropriate to set K = 2.



Combine Surface-form and Context.
We finally combine representations of the surface-form and
the context to obtain a joint representation v(w|X) of w. In
this work, we follow the idea of [Schick and Schütze, 2018]
and combine these two representations with a gate:

vw(w|X) = αvform(w) + (1− α)vcontext(w|X) (14)

where

α = σ(wT [vform(w)⊕ vcontext(w|X)] + b). (15)

Here, σ denotes the sigmoid function. For expression
consistency, we denote

vw(w|X;θS) = vw(w|X), (16)

where θS are those trainable parameters of the student
network.

Training
Because we use the teacher network to perform label
prediction, training object of the student network should
be learning to generate representations for OOV words that
are suitable for the teacher network. According to the
idea of previous works [Lazaridou et al., 2017; Khodak et
al., 2018; Schick and Schütze, 2018], we may train the
student network to minimize the reconstruction errors of
those within-vocabulary words with loss function defined by:

Lrecon =
1

N

N∑
i=1

∑
w∈Xi∩V

d (vw(w|Xi;θS), ew(w)) . (17)

Here, d(·, ·) defines a distance between two embeddings,
e.g., Euclidean Distance function. The biggest problem of
this practice is that it may suffer from the error propagation
problem, since the auxiliary reconstruction training criteria
Lrecon is not guaranteed to be compatible with training object
of the teacher network.

In this work, we propose to directly connect training of
the student network with the training object of the teacher
network, sidestepping designing an appropriate auxiliary
training criteria. Without loss of generality, we first consider
training of the student network in the situation that there is
only one OOV word within a given sentence. To simulate
this situation, for a training sentence X and its corresponding
label sequence Y, we randomly sample a word wi from X.
The resultant pair (wi,X\i,Y) forms a training example of
the student network. By replacing the ith column of e(X)
with v(w|X;θS) = [vw(w|X;θS) ⊕ ec(w)], we obtain the
input v(X) = {e(w1), · · · ,v(wi|X;θS), · · · , e(wn)} of the
teacher network. Based on v(X), we obtain new hidden
representation for each word ĥ(wi|X) and the task loss is
then defined by:

LS(X,Y;θS ,θT ) = log

∏m
t=1 φt(yt−1, yt|X)∑

Y′∈Y
∏m

t=1 φt(y
′
t−1, y

′
t|X)

,

(18)
where, this time, φt(y′, y|X) = exp(wT

y′,yĥ(wt) + by′,y).
Note that the training loss of the student network is the same
as that of the teacher network, making sure that their training

Algorithm 1 Training of the student network

1: Input: the teacher network T , training dataset D
2: Result: the student network S
3: while S does not converge do
4: sample X = {w1, · · · , wn} and its corresponding

Y = {y1, · · · , yn} from D
5: for i ∈ [1, · · · , n] do
6: Generate v(wi;X) for wi ∈ X;
7: v(X) = {e(w1), · · · ,v(wi|X), · · · , e(wn)};
8: Get LS(X,Y;θS ,θT ) based on v(X) according

to Eq. (18);
9: Update θS ← θS − α∂LS(X,Y;θS ,θT )

∂θS
.

is compatible. For training the student network, we perform
parameter update by:

θS ← θS − α
∂LS(X,Y;θS ,θT )

∂θS
. (19)

During the training of the student network, parameters of the
teacher network θT is fixed. Algorithm 1 shows the general
training process of the student network in the situation that
there is only one OOV word within a sentence.

To extend this process to the multiple OOV word situation,
we sample multiple words from X, e.g., wi and wj ,
generating an training example of the student network. The
loss defined on this example is similar to that in the one OOV
situation and minimized over θS .

4 Experiments
To evaluate the effectiveness of our proposed method, we
performed experiments on four part-of-speech tagging (POS)
tasks and four named entity recognition (NER) tasks. These
tasks have varying OOV rates, which is defined by the
percentage of testing words occurring less than five times in
the training set. These tasks share the same architectures of
the teacher and student network as illustrated in §3.

4.1 Datasets
POS: For POS, we conducted experiments on: (1) PTB-
English: the Wall Street Journal portion of the English Penn
Treebank dataset [Marcus et al., 1993], (2) RIT-English:
a dataset created from Tweets in English [Derczynski
et al., 2013], (3) GSD-Russian: the Russian Universal
Dependencies Treebank annotated and converted by Google1,
and (4) RRT-Romanian: the Romanian UD treebank (called
RoRefTrees) [Verginica Barbu Mititelu, 2016]. For PTB-
English, we followed the standard splits: sections 2-21 for
training, section 22 for validation, and section 23 for testing.
For RIT-English we followed the split protocol of Gui et al.,
[2017]. While, for UD-Russian and UD-Romanian, we used
their given data splits.

NER: For NER, we performed experiments on: (1)
CoNLL02-Spanish: the CoNLL2002 Spanish NER Shared
Task dataset [Sang, 2002]; (2) CoNLL02-Dutch: the

1https://universaldependencies.org/



Dataset Dev Test
#OOV OOV Rate #OOV OOV Rate

POS
PTB-English 8,392 6.37% 7,528 5.81%
RIT-English 774 34.52% 760 33.17%
GSD-Russian 21,323 17.96% 21,523 18.31%
RRT-Romanian 3,965 23.22% 3,702 22.67%

NER
CoNLL02-Spanish 2,216 50.91% 1,544 43.38%
CoNLL02-Dutch 1,819 69.53% 2,564 65.05%
Twitter-English 1,266 79.15% 4,131 79.13%
CoNLL03-German 3,928 81.27% 2,685 73.10%

Table 1: Number of OOV words (for POS) and entities (for
NER) in the development and testing sets, when treating
words occurring less than 5 times in the training set as OOV.
An entity is treated as OOV if it contains at least one OOV
word.

CoNLL2002 dataset of Dutch language; (3) Twitter-English:
an English NER dataset created from Tweets [Zhang et al.,
2018]; and (4) CoNLL03-German: the CoNLL2003 NER
dataset in German [Tjong Kim Sang and De Meulder, 2003].
These datasets are annotated by four types: PER, LOC,
ORG and MISC. For datasets except Twitter-English, we
used the official split training set for model training, testa for
validating and testb for testing. While for Twitter-English, we
followed data splits of Zhang et al., [2018].

Table 1 reports the statistic results of the OOV problem on
the development and testing sets of each dataset. From the
table, we can see that the OOV rate varies a lot over different
datasets.

4.2 Compared Methods
• RandomUNK: This baseline refers to the teacher

network trained on all words occurring in the training
set. At testing time, it represents words not occurring in
the training set with a consistent random vector.

• SingleUNK: This baseline trains the teacher network on
words that occur no less than 5 times in the training
set. The other infrequent words and those words not
occurring in the training set are all mapped to a single
trainable embedding eUNK, which is trained during
model training.

• [Lazaridou et al., 2017]: This baseline uses Rando-
mUNK as the teacher network. At testing time, it
first represents OOV words with their context word
representations by mean-pooling as defined in Eq.
(5) based on RandomUNK and then performs label
prediction using RandomUNK.

• [Khodak et al., 2018]: This baseline additionally trains
a linear transformer A to transform the mean-pooled
representation of [Lazaridou et al., 2017] as illustrated
by Eq. (2) for predicting representations of OOV words.
The training of A is performed on words that occur no
less than 5 times in the training set.

• [Schick and Schütze, 2018]: This baseline is a variant of
the proposed method, but its student network is trained
on the reconstruction object as defined in Eq. (17). It is
also related to the work of [Schick and Schütze, 2018]
but using the same architecture of the proposed method
to model word context and surface-form.

• [Akbik et al., 2018]: This baseline converts the input
sentence into a character sequence. Then, it applies
a character language model to the character sequence
to get the representation of every word within the
sentence. Based on the obtained word representations,
it applies a LSTM network to model the word sequence
and performs final tag recommendation. To make it
compatible with the setting of this work, we did not pre-
train the language model on external data and not use
pre-trained static word embeddings for this baseline.

4.3 Implementation Detail
For data prepossessing, all digits were replaced with the
special token “<NUM>”, and all url were replaced with the
special token “<URL>”. Dimension of word embedding,
character embedding, and LSTM were respectively set to 50,
16, and 50 for both the teacher and student networks. Kernel
size of the character CNN was set to 25 for kernel width 3
and 5. Optimization was performed using the Adam step rule
[Kinga and Adam, 2015] with the learning rate set to 1e-3.

4.4 Evaluation
We partitioned the testing (or development) set into two sub-
sets: within-vocabulary (WIV) words and out-of-vocabulary
(OOV) words. A word is considered WIV if it occurs more
than 5 times in the training set, otherwise OOV. For NER,
an entity is considered being of OOV if it contains at least
one word of OOV word set. We report model performance
(accuracy for POS and F1 for NER) on OOV set. This is
because we can exactly tell which subset a word belongs to,
thus we can easily combine the best model on each subset to
achieve the best overall performance on the whole testing set.
For example, we can perform label prediction for OOV words
using our proposed model, and perform label prediction for
WIV words using the best performing model on the WIV
subset.

4.5 Main Results
Table 2 and 3 reports model performance on the OOV set
for POS-tagging and NER, respectively, when using BiLSTM
and CNN to implement the teacher network. From this
table, we have the following observations: (1) on most
tasks, methods dealing with the OOV problem outperform
the RandomUNK baseline. This verifies the necessity to
deal with the OOV problem in sequence labeling. (2) the
method [Schick and Schütze, 2018] using both surface-form
and context information to generate representations of OOV
words outperforms the method [Khodak et al., 2018] using
only context information on most datasets. This shows
the complementary of surface-form and context information;
(3) the most comparative baseline in the teacher-student
paradigm [Schick and Schütze, 2018] in general outperforms



Arch Model PTB-English RIT-English GSD-Russian RRT-Romanian
Dev Test Dev Test Dev Test Dev Test

LSTM

RandomUNK 85.25 85.95 63.07 61.05 82.06 80.97 86.73 87.36
SingleUNK 86.90 88.78 61.37 61.97 85.22 84.68 90.11 89.03
[Lazaridou et al., 2017] 83.90 85.67 63.82 63.16 85.22 84.62 89.53 90.14
[Khodak et al., 2018] 84.03 85.67 64.21 64.07 86.23 85.41 89.94 90.11
[Schick and Schütze, 2018] 87.62 89.37 64.73 62.24 86.35 85.49 90.34 90.01
[Akbik et al., 2018] 87.82 88.90 58.01 59.60 83.69 83.93 88.75 89.03
Proposed 88.68 90.53 66.54 64.87 87.28 86.47 91.64 90.28

CNN

RandomUNK 88.10 88.54 61.88 63.42 85.28 89.87 88.31 89.32
SingleUNK 87.16 88.84 60.85 59.34 85.28 86.17 87.59 87.16
[Lazaridou et al., 2017] 89.75 90.74 61.49 63.02 88.86 90.06 89.43 89.57
[Khodak et al., 2018] 89.89 90.84 61.88 63.42 89.18 90.34 90.01 90.08
[Schick and Schütze, 2018] 89.10 90.61 62.79 62.63 89.13 90.08 90.51 90.43
Proposed 91.33 91.74 65.82 65.27 90.64 91.52 91.74 91.68

Table 2: Model performance on the OOV set for part-of-speech tagging when implementing the sequence modeling layer of
the teacher network with LSTM-based and CNN-based architectures.

Arch Model CoNLL02-Spanish CoNLL02-Dutch Twitter-English CoNLL03-German
Dev Test Dev Test Dev Test Dev Test

LSTM

RandomUNK 69.36 72.06 64.23 64.08 56.88 56.38 55.92 56.89
SingleUNK 68.79 71.59 67.83 66.39 56.82 56.39 59.69 60.16
[Lazaridou et al., 2017] 68.61 69.08 65.99 65.43 47.72 47.20 47.87 49.17
[Khodak et al., 2018] 68.74 69.53 66.34 65.70 48.22 47.28 47.97 49.33
[Schick and Schütze, 2018] 70.84 72.88 68.88 67.51 59.18 57.21 55.83 58.42
[Akbik et al., 2018] 61.78 64.06 60.49 62.09 49.68 50.22 55.06 53.01
Proposed 73.91 74.63 70.33 70.12 60.14 58.32 60.55 61.79

CNN

RandomUNK 61.07 61.61 53.48 57.31 44.82 43.72 56.23 56.94
SingleUNK 56.87 58.30 60.68 60.46 57.13 57.34 62.33 62.07
[Lazaridou et al., 2017] 54.97 60.39 53.73 56.99 42.91 46.99 43.38 43.54
[Khodak et al., 2018] 55.12 60.41 54.20 57.00 48.21 47.78 53.19 53.50
[Schick and Schütze, 2018] 61.23 61.54 53.60 57.48 46.79 46.59 56.16 57.44
Proposed 63.38 63.02 59.24 60.33 57.06 57.32 62.42 63.01

Table 3: Model performance on the OOV set for named entity recognition.

SingleUNK. This verifies the effectiveness of the motivation
beneath the teacher-student paradigm; (4) our proposed
method consistently outperforms [Schick and Schütze, 2018],
which differs from the proposed method in the training of
the student network. This, on one hand, shows the existence
of error propagation from the student network to the teacher
network, and on the other hand approves the effectiveness
of our proposed method for addressing OOV problem;
finally (5) our proposed method consistently outperforms the
character language model [Akbik et al., 2018]. A possible
explanation of this result is that our method can use word-
level embedding without suffering from the OOV problem
while the character language model cannot.

5 Conclusion
In this work, we proposed a novel method to address the out-
of-vocabulary problem in sequence labeling systems using
only training data of the task. It is designed to generate

representations for OOV words from their surface-forms
and contexts. Moreover, it is designed to avoid the error
propagation problem suffered by existing methods in the
same paradigm. Extensive experimental studies on POS-
tagging (POS) and named entity recognition (NER) show that
this method can achieve superior or comparable performance
over existing methods on the OOV problem.
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[Delėger et al., 2016] Louise Delėger, Robert Bossy, Es-
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