
15

A Neural Semantic Parser for Math Problems Incorporating
Multi-Sentence Information

RUIYONG SUN, Fudan University, China
YIJIA ZHAO, Fudan University, China
QI ZHANG, Fudan University, China
KEYU DING∗, iFLYTEK CO.,LTD, China
SHIJIN WANG, iFLYTEK CO.,LTD, China
CUI WEI, Information Center of Ministry of Science and Technology, China

In this paper, we studied the problem of parsing a math problem into logical forms. It is an essential pre-
processing step for automatically solving math problem. Most of the existing studies on semantic parsing
mainly focused on the single sentence level. However, for parsing math problem, we need to incorporate
information from multiple sentences into consideration. To achieve the task, we formulated the task as
a machine translation problem and extended the sequence to sequence model with a novel two-encoder
architecture and a word level selective mechanism. For training and evaluating the proposed method, we
constructed a large-scale dataset. Experimental results showed that the proposed two-encoder architecture
and word level selective mechanism could bring significant improvement. The proposed method can achieve
better performance than the state-of-the-art methods.

CCS Concepts: • Computing methodologies → Artificial intelligence; Natural language processing;
Language resources;

Additional Key Words and Phrases: Semantic parsing, math problem solving, multi-sentence, selective mecha-
nism

ACM Reference Format:
Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei. 2019. A Neural Semantic Parser for
Math Problems Incorporating Multi-Sentence Information. ACM Trans. Web 9, 4, Article 15 (January 2019),
16 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
We studied the problem of parsing amath problem into logical forms. It is an essential pre-processing
step for automatically solving math problems [17]. Most of the recent studies on semantic parsing
can be roughly divided into three categories: grammatical-rules models [17, 35], syntactic-parsing
models [8], and sequence-to-sequence models [2]. Grammatical-rules models and syntactic-parsing
models relied on manually designed features or rules which could render models representation-
specific or domain-specific. In contrast to the above two categories of models, sequence-to-sequence
∗This is the corresponding author

Authors’ addresses: Ruiyong Sun, Fudan University, China, rysun16@fudan.edu.cn; Yijia Zhao, Fudan University, China,
zhaoyj16@fudan.edu.cn; Qi Zhang, FudanUniversity, China, qz@fudan.edu.cn; KeyuDing, iFLYTEKCO.,LTD, 666Wangjiang
West Road, Hefei, 230088, China, kyding@iflytek.com; Shijin Wang, iFLYTEK CO.,LTD, China, sjwang3@iflytek.com; Cui
Wei, Information Center of Ministry of Science and Technology, China, cuiw@most.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1559-1131/2019/1-ART15 $15.00
https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

15:2 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

Problems:	
Define a function ! " = lg " + 	() − 2 	 where ,	is a constant greater than 0. Find the domain D of the function; When
,	-	 1,4 		,Find the minimum value of the function at 2, +∞ . For all " ∈ 2,+	∞ ,! " > 0 always holds true, try to
determine the range of value ,	.

Logical	forms	�
Function (! " , 56(" + (

) 	− 2)) ; GreaterThan(,, 0) ; Constant(,);

∃	:ℎ,<	, ! " :>?@,5A(:ℎ,<, BCD,EFG!H@FI<ECF B, ! " ;	
∃	:ℎ,<, ,, ! " :KL5CF6MC ,, 1,4 ∧ >?@,5A :ℎ,<,OEFED,5P,5@LG!H@FI<ECF ! " , 2,+∞ ;	

∀	x	∃	! " ,,: KL5CF6MC ", 2,+∞ 	∧ STL,<LTMℎ,F ! " ,0 ; ∃		:ℎ,<,,: >?@,5A(:ℎ,<, P,5@LU,F6LG!VCFA<,F< ,);

Fig. 1. An example of math problem and its logical forms. The upper part is a math problem with four
sentences, and the lower part is the logical forms of the four sentences.

models directly predict the logical forms of the natural language input by used an encoder-decoder
architecture which do not contain any manually designed features.

However, sequence-to-sequence models have only performed evaluations at the single sentence
level datasets, while math problems usually havemore than one sentence andwe need to incorporate
information frommultiple sentences into consideration. Our experiments onmath problems showed
that neural sequence-to-sequence models usually had bad performances if an entire math problem
was treated as a long sentence. However, splitting a math problem into multiple single sentences,
and treating this task at the single sentence level can cause the loss of some important information in
the context sentences. As shown in Figure 1, the word “function" in the second sentence represents
“f (x)" in the first sentence.

In this paper, we introduce a novel sequence-to-sequence model with two encoders that parses the
math problems at the single sentence level, but intelligently introduces the important information
from the entire math problem. First, input math problem x is split into multiple single sentences
s1, s2, ..., sM . The sentences in the math question are forward related, and s1, s2, ..., si−1 are defined
as context sentences of the i-th sentence si . Then, for each single sentence, one encoder RNNmaps its
words into hidden state vectors, and another encoder does the same thing to its context sentences to
obtain the semantically related words from these sentences. A decoder based on a pointer-generator
network [20] takes the state vectors of these two encoders as inputs and generates the logical forms
of the input sentence. To reduce the interference from unrelated words in the context sentences, we
introduce a word-level selective mechanism in the second encoder to help our model determine the
importance of each source-side word. Our word-level selective mechanism constructs a second-level
representation of each source-side word by using a selective gate network [37], which enhances
the model by extracting semantic information from the source sentence.

To evaluate our model, we constructed a labeled dataset based on the Chinese National College
Entrance Examination (like the SAT in the US), which contains over 15,000 math problems with
complex logical structures. Experimental results on our dataset showed that our model improved the
sentence-level accuracy of the best baseline mode from 63.76% to 69.83%, and the logical form-level
accuracy from 65.09% to 70.70%.

The main contributions of this paper can be summarized as follows.
• We investigated multi-sentence-level neural semantic parsing, which has been relatively
unexplored in past research and is more challenging than the single-sentence level.
• We present novel extensions to the neural encoder-decoder architecture and propose a
word-level selective mechanism to achieve this task.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:3

• Extensive experiments on our large-scale dataset demonstrated that our model based on a
two encoder architecture outperformed several well-known statistical methods and neural
models that performed well on the task of semantic parsing.

2 RELATEDWORK

The Semantic parsing of natural language has been an long AI challenge [31] and has received
significant attention. Most of the early studies [3, 5, 11, 19, 26, 32, 33] relied on manually designed
features and predefined rules, which made their models task-specific or representation-specific.
Recent work has shown that a neural attention model can be used for semantic parsing with

very good effects [7, 10, 12, 14, 23, 24]. Most of these studies used an encoder RNN to map the input
words of the input sequence into hidden state vectors, and then used a decoder RNN with these
state vectors as inputs and generated the logical forms of the input word by word. However, these
models were trained on a single-sentence corpus, and compared with the math problems in our
dataset, these sentences are very short, which makes it easier to align semantically related words
using the attention mechanism. Our goal was to propose a novel neural attention model that can
perform well at multi-sentence-level semantic parsing tasks.

The automation of math problem solving has also been studied for a long time and dates back
to Feigenbaum et al. [4]. Many previous studies on math problem solving tended to directly map
the math problem text to equations or templates by using statistical learning approaches or a neural
sequense to sequence model and reported promising results [9, 13, 16, 18, 28, 29, 36]. Other works
focused on symbolic approaches [15, 22], where the math problem text was first transformed into
specific structures by some means. Then, equations or templates were derived from these structures.
Recently, a few studies [8, 17, 21] have given attention to the semantic information in math

problems, which proved to be important for math problem solving [17, 21]. However, the dataset
used to evaluate their model was quite small. The conclusions obtained from these datasets may not
be representative. Comparatively, our work made great efforts to focus on the semantic information,
and our model was evaluated on a much larger dataset.

3 PROBLEM STATEMENT

The semantic parsing of a math problem can be treated as a sequence-to-sequence task. Given an
input sequence of words of a math problem x1,x2, ...,xN ϵ ν (in), where ν (in) is the input vocabulary,
the goal is to train a model that can learn its logical forms y1,y2, ...,y J ϵ ν (out), where ν (out) is the
the output vocabulary.

3.1 Neural Sequence to Sequence Modeling

A neural sequence to sequence model relies on an encoder-decoder framework, and both the encoder
and decoder are implemented with Recurrent Neural Networks (RNNs). In such a framework, the
encoder RNN maps the input words of a math problem x = (x1,x2, ...,xN) into hidden state vectors
h1,h2, ...,hN and the decoder RNN takes these state vectors as inputs and generates the logical
forms of the input math problem y = (y1,y2, ...,y J) word by word. The target token yj in output
sequence y is predicted as follows:

P(y |x) =

J∏
j=1

P(yj |y<j ,x) (1)

where J is the length of the output sequence, and y<j is the previous output.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:4 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

… …

… …
ℎ"#ℎ"$ ℎ"% ℎ"&

ℎ"$ ℎ"% ℎ"# ℎ"&

'"$ '"% '"# '"&

… …

… …

� � � �

ℎ(#ℎ($ ℎ(% ℎ()
ℎ($ ℎ(% ℎ(# ℎ()

'($ '(% '(# '()

'($* '(%* '(#* '()*

+(,+,

×	/0

P234056
			7$ 				7% 					7,8$

9$ 9% 9,8$ 9,

				7,

…
×	/:

;(=,)

+",

Source
Encoder

Context
Encoder

Embedding

Embedding

Selective
Gate

Context
Vectors

Attention
Distribution

/2

Fig. 2. Overview of our semantic parsing model. Our model contains two encoder. The source encoder and the
context encoder based on a selective gate maps the source sentence and its context sentences to hidden state
vectors, respectively.The decoder takes these state vectors as inputs and generates the logical forms of the
source sentence.For simplicity, we omit some links for computing the attention score (see section Approach
for more details).

This task can be treated at the single-sentence level by taking each sentence of a math problem
as an input and generating its logical forms. However, this will cause the lose of some important
information in the context sentences.

3.2 Two-Encoder Architecture and word-level selective mechanism

Compared to the encoder-decoder framework, our two-encoder architecture treats this task at the
single sentence level, but provides an additional encoder to introduce the important information of
the entire math problem. We also introduce a word-level selective mechanism in this encoder to
help it determine the importance of each source-side word in the context sentences, which was
shown to be effective in reducing the interference of unrelated words. Our model is described in
detail in next section.

4 APPROACH

In this section, we describe the two-encoder architecture, word-level selective mechanism, joint
attention mechanism, and pointer generator network-based decoder, which are shown in Figure 2.

4.1 Word Representation

We get our word embedding by using an embedding matrix E ∈ Rd×V where d is the embedding
dimension, and V is the words vocabulary size. A word embedding vector xi is represented by
xi = Ewi wherewi is the i-th word in a sentence.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:5

4.2 Two-Encoder Architecture

Our model parses the math problems at the single sentence level, but uses an additional encoder
to introduce the important information of the entire math problem. In detail, one encoder maps a
source sentence to hidden state vectors and the other encoder maps its context sentences to hidden
state vectors. Both of our two encoders are implemented using a single-layer bidirectional LSTM
network. The sequence of words of a math problem is fed into the LSTM network word by word at
each time step. Let ht , ct define the hidden state vectors at a time step. They are computed in the
LSTM as follows:

it = σ (Wixt +Uiht−1) (2)
ft = σ (Wf xt +Uf ht−1) (3)
ot = σ (Woxt +Uoht−1) (4)
c̃t = tanh(Wcxt +Ucht−1) (5)
ct = ft ⊙ c̃t−1 + it ⊙ c̃t (6)
ht = ot ⊙ tanh(ct) (7)

where xt is an embedding vector of the input word, the variables U and W are weight matrices, σ
is a sigmoid activation function, and ⊙ represents element-wise multiplication.

There is a forward LSTM and a backward LSTM in the bidirectional LSTM, which are respectively
used to obtain the forward hidden state (

−→
h1,
−→
h2, ... ,

−→
hN) and backward hidden state (

←−
h1,
←−
h2, ... ,

←−
hN).

Then, the forward and backward hidden states are concatenated to obtain the final hidden states,
i.e., hi = [

−→
hi ;
←−
hi]. At this point, we obtain the hidden state vectors (hf 1, hf 2, ..., hf N) of the source

sentence and the hidden state vectors (hs1, hs2, ..., hsM) of its context sentences.

4.3 Word Level Selective Mechanism

To obtain the semantically related words from the context sentences, the second encoder of our
model maps the context sentences of the source sentence into hidden state vectors (hs1, hs2, ...,
hsM). But for the source sentence, only a few words in its context statement are relevant. Thus,
we need to keep the highlights and remove the unrelated information. Zhou et al. [37] proposed a
selective mechanism that uses a gate network to map the hidden state vectors (hs1, hs2, ..., hsM)
into a second-level representation (h′s1, h

′

s2, ..., h
′

sM) that can determine the importance of each
word in a context sentence before the decoder. In this section, we propose a word-level selective
mechanism to do the same thing at the word embedding layer and obtain better performance.
In detail, our word-level selective mechanism maps the embeddings (xs1, xs2, ..., xsM) of each

word in a context sentence into a second-level representation (x ′s1, x
′

s2, ..., x
′

sM). First, we concatenate
the last forward hidden states

−−→
hsM and backward hidden states

←−
hs1 of the second encoder as the

context sentence representation S:

S = [
←−
hs1;
−−→
hsM] (8)

Then, the embedding selective gate vector esGatesi and second-level embedding representation
x
′

si of the inputs in each time step i are computed as follows:

esGatesi = σ (Wsxsi +UsS + b) (9)

x
′

si = xsi ⊙ esGatesi (10)

whereWs andUs are the weight matrices, and b is the bias vector.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:6 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

4.4 Joint Attention Mechanism

We extend the attention mechanism [1] in our model to jointly learn to align in two encoders. For
the first encoder, the context vectors cf t at each time step t are calculated as follows:

cf t =
I∑
i=1

α
f
t ihf i (11)

Here, α f
t i denotes the attention distribution and is calculated as follows:

e
f
t i = υ · tanh(Wehf i +Uest + be) (12)

α
f
t i =

exp(e
f
t i)∑I

i′=1 exp(e
f
t i′
)

(13)

where J is the length of the target sequence st is the decoder hidden state at time step t and W, U,
and υ are the weight matrices. We use similar equations to obtain the context vectors cst for the
second encoder at each time steps t, except that we use the second-level embedding representation
x
′

si instead of the hidden states hsi .
Then, we concatenate the context vectors (cf t , cst) of the two encoders as the final context vector

ct :
ct = [cf t ; cst] (14)

4.5 Semantic Decoder

Because math problem sentences and their logical form representations share many of the same
subsequences, our decoder uses a pointer-generator network [20] to jointly copy and generate the
logical form tokens. Briefly, our decoder obtains the target tokens by calculating four important
elements: the generation probability pд ∈ [0, 1], copy probability pc ∈ [0, 1], vocabulary generation
distribution Pд(yt), and vocabulary copy distribution Pc (yt). The final vocabulary distribution
P(yt |y<t ,x) at time step t is calculated as follows:

P(yt |y<t ,x) = pдPд(yt) + pcPc (yt) (15)

In detail, Pд(yt) is the generation probability distribution of all the words in the vocabulary and
is calculated as follows:

Pд(yt) = so f tmax(U (W [st , ct] + bw) + bu) (16)

where U, W, and b are learnable parameters; st is the decoder hidden state at time step t; and ct is
the context vector of the problem obtained using equation (14). The generation probability pд for
each time step is calculated as follows:

pд = σ (wT
f ccf t +w

T
sccst +w

T
e et +w

T
s st + b) (17)

where w∗ are vectors, b is a scalar, et is the decoder input at time step t, and cf t and cst are the
context vectors of the two encoders (as seen in equation (14)). The copy probability pc for each
time step is calculated as follows:

pc = 1 − pд (18)
Pc (yt) is the copy probability distribution of the words that appear in the sentence that fed to the
first encoder. In other words, when obtaining the logical form tokens of a sentence, we tend to
make the decoder only copy words from this sentence and not all of the words in the entire math

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:7

problem. In this case, Pc (yt) is obtained by sampling from the attention distribution of the first
encoder α f

t i :
Pc (yt) =

∑
i :wi=w

α
f
t i (19)

Math problems contain many equations, if the equations are generated word by word, some
incorrect equations may be generated, such as: “a + +b”. How to ensure that the output equations
are mathematically correct is a key point. In this task, the equations in the math problems needs
to be copied into their logical forms without any change, such as the equation lд(x + a

x − 2) in
the Figure 1. So we treat each equation as a single word. In that way, the decoder will generate a
equation at one time step.

In addition, for each input sequence, we add all the words in this sequence to the vocabulary to
produce out-of-vocabulary (OOV) words.

4.6 Objective Function

During training, our goal is maximize the likelihood of the generated logical forms given the input
sequence. Therefore, we chose the negative log-likelihood loss function:

loss = −
1
D
loдP(y |x) (20)

where D denotes the set of all math problem-logical form training pairs, and P(y |x) is computed as
shown in Equation 1.

5 EXPERIMENTS

We compared our model with several popular semantic parsing models using our dataset. The exper-
imental results show that both the two-encoder architecture and word-level selective mechanism
can bring significant improvement.

5.1 Dataset

MotivationMany previous studies on semantic parsing have focused on question-answer pairs,
because there are several popular public datasets. However, each question in those datasets contains
only one context-independent sentence, which is not in line with the characteristics of natural
language. A few recent works [17, 21] began to pay attention to math problems, and performed
semantic parsing on the multi-sentence level. However, the datasets they used have scale limitations
and are not sufficient to train the models based on neural networks. Moreover, the conclusions
based on those datasets may not be representative. Because of the limitations of the previous
datasets, we constructed a large multi-sentence-level dataset that contains math problems collected
from Chinese National College Entrance Examination (as the SAT in the US) papers.

Data Description and Division Following Seo et al. [21], all 15,546 of the math problems in our
dataset were labeled using the basic constructions of first-order logic. Because their dataset con-
tained only geometry problems, we made some extensions to cover all the required predicates (such
as “GreaterThan”) and entities (such as “vectors”) that appeared in our dataset. For all experiments,
we randomly split the dataset into training set(3/5), development set(1/5) and test set(1/5).

Data CollectionWe aim to construct a large and diverse math problem collection that can fully
verify our model’s ability to understand math problem texts. To achieve this goal, we choose
to collect math problem from Chinese National College Entrance Examination papers. Because
problems in these papers covers multiple entrance exam math knowledge points includes functions,

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:8 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

Dataset # Problems Mathematical symbol Problems Typespropositional predicate others

Train 9369 functions (power,exponential,
∧ ∨ ∀ = , ≈ logarithmic,trigonometric);

Test 3078 ¬ ∃ ∪ ∩ inequalities; complex number;
→ ∃! ⊥ ∥ ≃ aggregate; sequence; vector;

Dev 3099 ⇔ <>⩽⩾ geometry (solid, plane);
coordinate system

Table 1. Dataset statistics (‘propositional’ for the propositional logic symbols; ‘predicate’ for the predicate
logic symbols;)

Datasets # problems avg.sents avg.words uniq.words atoms
JOBs [34] 640 1.00 9.38 391 4.63
GEOQUERY[34] 880 1.00 8.56 284 4.25
GEOMETRY [21] 119 1.74 23.64 202 11.00
UNIV [17] 394 3.74 70.59 365 10.34
Ours 15546 5.22 25.06 23233 9.78

Table 2. Statistics of our dataset and other semantic parsing data

sequences, inequalities, complex number, geometry and other key points. Besides, our dataset
contains almost all of the mathematical logics(∀,∃,� etc.).
We collected over 2,000 sets of math examination paper for the last ten years through crowd-

sourcing. In detail, the people we hire is given WORD format papers. They are required to convert
the papers into XML formats according to the gold standard we set. For example, mathematical
symbols and formulas in math problems need to be marked in latex format. In addition, another
person’s confirmation is necessary to ensure high-quality dataset. In this way, we collect over 15k
math problems.
Table 1 shows the statistics of the datasets. The first column lists the number of problems. The

remaining columns in Table 1 reveal the logical complexities of the problems. ‘propositional’ list
some of the propositional logic symbols in the problems. The columns for the ‘predicate’ and
‘others’ list some predicate logic symbols and other important symbols in the math problems. In
conclusion, our dataset covers a wider variety of mathematical symbols.
We compare our dataset to several benchmark datasets listed by Matsuzaki et al. (2017). The

statistics of these dataset are listed in Table 2. The first column lists the number of problems. The
next two provide the average number of sentences and words in a problem. The fourth column list
the number of unique words in the whole datasets. The column for ‘atoms’ shows that the average
number of predicates in each problem. We can see our dataset is much larger than other benchmark
dataset.

Labeling with Semantic Language To represent the problem clearly, commonly and simply, we
develop a semantic language following the basic constructions of first-order logic, but extending it
by covering all the required predicates and objects in our dataset. We had two experienced people
to confirm the quality of the data, and the simple kappa coefficient of their assessment results
had to be greater than 0.9. According to the statistics, our semantic language has more than 500
different objects (e.g. circle, rectangle) and 2600 different predicate functions (e.g. GreaterThan).

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:9

5.2 Baseline

We compared our model with several well-known statistical methods and neural models that
performed well on the task of semantic parsing.

WASP Wong and Mooney [30] proposed a novel statistical model that maps natural language sen-
tences to their formal language representations by using statistical machine translation techniques.
There are two core parts in their model: a word alignment model and a parsing model. The word
alignment model is used for lexical acquisition, and the parsing mode is a syntax-based statistical
machine translation model.

Seq2Tree Dong and Lapata [2] proposed a sequence to tree model based on recurrent neural
networks, which has been proved to be effective on the task of semantic parsing.

Seq2Seq Sutskever et al. [25] proposed a novel Seq2Seq model based on an encoder-decoder
framework, which has been attracting increasing attention. We implemented it with a bidirectional
LSTM encoder and a two-layer LSTM decoder.

S2S+ATT Bahdanau et al. [1] introduced an attention mechanism to the Seq2Seq model to dynam-
ically generate a context vector, which helped to find important inputs for a target word being
generated. We implemented it as one of our baseline models.

S2S+COPY In several tasks, some output tokens are the same as some of the tokens in the input
sequence. To deal with this problem, Gu et al. [6] incorporated a copying mechanism in the Seq2Seq
model to locate a certain sub-sequence of the input sentence and place it into the output sequence.
We implemented it as one of our baseline models.

S2S+PO-GEN See et al. [20] proposed a pointer-generator network architecture with coverage to
jointly copy and generate a target from the input sequence and achieved abstractive state-of-the-art
results. We implemented it as one of our baseline models.

5.3 Experimental Settings

For all the baseline models, we used same meaning representations and the same training-test split
for our dataset. For our model and all the baseline models based on nearal networks, we followed
See et al. [20] and set the word embedding size to 128, and all of the LSTM hidden state sizes to
256. For the hyper-parameter settings, the dropout rate was selected from {0.2, 0.3, 0.4, 0.5} and
the batch size was selected from {32, 64, 96, 128 }. For the pointer-generator network, the source
and target sequences shared a vocabulary of more than 20K words. We performed an evaluation in
each epoch, and the models stopped training when the evaluation indicators of the validation set
did not improve after 10 consecutive evaluations.

5.4 Implementation Details

We designed two levels of comparative experiments for all the baseline models. For sentence-level
experiments, we split each math problem into multiple single sentences, and used each single
sentence as the input of each model. For problem-level experiments, we treated each math problem
as a long sentence, and used the entire math problem as the input to keep the information of the
math problem.

For our model and all the baseline models, we reported the sentence-level match accuracy of test
dataset as evaluation metric. The sentence-level match accuracy was defined as the proportion of the
input sentences that were correctly parsed to their gold standard logical forms. That is, the logical

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:10 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

Number of sentences
<=2 3 4 5 >=5 Overall

WAPS [30] 9.19 12.54 15.87 21.05 17.79 17.55
Seq2Tree [2] 12.74 19.21 21.35 26.35 19.73 20.48

problems Seq2Seq [25] 11.74 16.51 18.26 25.75 20.92 20.91
level S2S + ATT [1] 26.02 38.25 42.98 57.03 51.76 50.27

S2S + COPY [6] 29.12 44.29 49.43 62.26 57.12 55.55
S2S + PO-GEN [20] 29.79 40.95 47.75 59.32 55.11 53.51
WAPS [30] 6.76 16.19 17.42 37.71 34.46 31.98
Seq2Tree [2] 8.08 20.32 23.03 50.04 38.43 37.26

sentences Seq2Seq [25] 7.75 18.10 22.05 45.41 39.14 36.83
level S2S + ATT [1] 24.58 41.90 49.30 62.71 64.76 60.58

S2S + COPY [6] 24.25 40.63 48.60 70.83 67.00 63.39
S2S + PO-GEN [20] 29.24 50.63 55.76 65.83 67.13 63.64

Our Model 34.88 54.60 59.27 72.89 73.22 69.67
Table 3. Evaluation results on problem-level experiments and sentence-level experiments.

forms generated by the model are the same in both type and quantity as the gold standard logical
forms. But the order of all logical forms of a sentence is not important. If a model’s output logical
forms satisfies this conditions,we think the output of this model is correct, otherwise it is an error
output. For example, as shown in Figure 1, the sentence “Define a function f (x) = lд(x + a

x − 2)
,where a is a constant greater than 0” correspond to three logical forms “Function (f (x), lд(x+ a

x −2));
GreaterThan(a, 0); Constant(a);”. The above sentence can also correspond to the sequence of logical
forms “Constant(a); GreaterThan(a, 0); Function (f (x), lд(x + a

x − 2));”.

5.5 Main Results

We first evaluated the performance of our model and the baseline models on our dataset, and then
performed a set of parametric experiments on our model and the best performing baseline models
to show that the good performance of our model did not benefit from the introduction of more
parameters.

Table 3 shows problem-level experiments and the single sentence-level experiments. We group
the results according to the number of sentences included in the math problem, and our model
performs best in every group. In addition, the performance of the baseline models at two levels of
experimentation show that although these models lost contextual information when running at the
single sentence-level, they still achieves better accuracy than at the problem-level. This is because
most of the words in different sentences are not semantically related, and the unrelated words
in different sentences will cause bad interference if we treat the entire math problem as a input.
In comparison, our model parsed the math problems at the single sentence level, but introduced
the important information of the entire math problem by using an additional encoder. As shown
in Table 3, our model outperformed the best performing baseline model by up to 6.03% at the
sentence-level accuracy.

Compared to the neural baselinemodels, ourmodel contains an additional encoder that introduces
more parameters. This increase in parameters could increase the expression ability of the neural
network and produce better performance. We evaluated our model and the best performing neural
baseline models of the two levels experiments on different parameter dimensions. In detail, we

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:11

128 144 160 176 192 208 224 240 256
Hidden state sizes of LSTM units

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Se
nt

en
ce

 le
ve

l m
at

ch
 a

cc
ur

ac
y

73.68

67.37 67.64

62.78

57.14

55.43

Our Model
S2S+PO-GEN(s)
S2S+COPY(p)

Fig. 3. Results of our model and the best performing baseline models influenced by different hidden state sizes
of LSTM units. “p” and “s” represent the problem-level and the single sentence-level experiments respectively.

	��1�����
�����A ��B �������1�
 # :�B 2 � CB �� ������ !

yizhi shuangquxian C		:			formula			de			youzhunxian yu liang jianjinxian jiaoyu A		B				liang dian
(Given	a	hyperbola	C, its	right	directrix intersects	with	its	two	asymptotes	at	points	A	and	B.)

� � � :"! � �

qi			youjiaodian wei F
(and	its	right	focus	point	 is	F)

Model																									Outputs	of	s2
Golden � RightfocusOfHyperbola	(C	,	F)	;
S2S+COPY(p) � None
S2S+PO-GEN(s)� RightfocusOfHyperbola	(rs_a ,	F)	;
Our	Model � RightfocusOfHyperbola	(C	,	F)	;

Fig. 4. Example outputs from our model and the best baseline models. “p” and “s” represent the problem-level
and the sentence-level experiments respectively.

set the hidden state sizes of the LSTM units to {128, 144, 160, 176, 192, 208, 224, 240, 256}. Figure 3
shows the sentence-level accuracy at each parameter dimension. We found that the best hidden
state sizes for our model and baseline models were not the biggest LSTM hidden state size (256).
And continuing to increase parameters would result in degraded model performance when the
parameter is close to 256. Our model achieved the highest accuracy of 73.68% when the LSTM
hidden state size was set to 208. It is worth noting that our model with the smallest LSTM hidden
state size (128) had a similar accuracy with the best performance baseline model (Setting LSTM
hidden state size to 208). These results showed that the good performance of our model did not
benefit from the introduction of more parameters.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:12 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

S1

The logical form
 for S

2

S2

yi
zh
i

sh
ua
ng
qu
xi
an

de

yo
uz
hu
nx
ia
n

yu

li
an
g

ji
an
ji
nx
ia
n

ji
ao
yu

li
na
g

di
an

we
i

qi yo
uj
ia
od
ia
n

右
焦
点

F

已
知

双
曲
线

C ： fo
rm
ul
a

的

Rightfocus-

ofHyperbola

C

，

F

）

点两BA

交
于

渐
近
线

两与右
准
线

（

；

其 为

Fig. 5. Attention score matrices of two adjacent sentences in a math problem that computed by our model.
Darker color represents higher attention score.

5.6 Effects of two-encoder architecture and word-level selective mechanism

We did additional experiments of our model and the best performing neural baseline models of
the two levels experiments and analyses to demonstrate the effectiveness of our two-encoder
architecture and word-level selective mechanism.
Figure 4 shows two adjacent sentences in a math problem of our dataset, the gold standard

logical forms of the second sentence and the outputs of the second sentence that were generated by
our model, the best problem level baseline model “S2S+COPY” and the best single sentence-level
baseline model “S2S+PO-GEN”. It is obvious that the word “qi” (its) in the second sentence means
“shuangquxian” (hyperbola) in the first sentence. Thus, the parser needs to obtain information
from the first sentence when parsing the second sentence. In theory, both our model and the
problem-level baseline models could achieve this goal. However, in actuality, our model generated
the correct logical forms of the second sentence, but the best problem-level baseline model did not
generate any logical forms related to the second sentence. Obviously, the problem-level baseline
model did not assign the alignment probability to each word very well. While the sentence-level
baseline model could not obtain information from the first sentence, it generated the token “rs_a”,
instead of the “C” in the first sentence. The token “rs_a” is a collective term for pronouns in our
dataset.

Figure 5 shows the alignment matrix produced by our model when parsing the second sentence
to logical forms. The tokens above the picture are the words of the two sentences, and the tokens
on the left are the logical forms of the second sentence generated by our model. Each cell in
the alignment matrix corresponds to αt i , which is computed by Equation 13. It can be seen that
the semantically related words in different sentences are assigned higher alignment probabilities
by our model, such as the alignments between “shuangquxian” (hyperbola) in the first sentence,
“youjiaodian” (right focus point) in the second sentence, and predicate “RightfocusOfHyperbola”
in the logical forms. These results showed that although our model parses the math problems at
the single sentence-level, it does successfully introduce important information from the context
sentences.
To verify the effectiveness of our word level selective mechanism, we used the following three

settings:
1) Using a hidden state level selective mechanism (H_SEL) [37]

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:13

Models Accuracy
one-encoder two-encoder

Our Model w/o SEL 64.74 64.73
Our Model w/ H_SEL 67.23 66.64
Our Model w/ W_SEL 69.83 69.70

Table 4. Evaluation results of our model on three types of selective mechanism settings. “w/o” and “w/”
represent “without” and “with” respectively.

Se
nt
en
ce
 le
ve
l m
a
tc
h
a
cc
u
ra
cy

- - - - #problems

Fig. 6. Sentence-level accuracy of each model in different length of math problems. The black dash line shows
the number of math problems in each group.

2) Using our word-level selective mechanism (W_SEL)
3) Not using either of the two selective mechanisms, but simply using the original embedding of

each word for the context sentence.
And for the setting of H_SEL and W_SEL, we choose to use them in both two encoder and only

the second encoder. Table 4 lists the results of our model with these three settings. Our word-
level selective mechanism performed the best and outperformed the hidden state-level selective
mechanism by up to 2.60% at the sentence level accuracy. Besides, as shown in Table 4, it is better
to use the selection mechanism only for the second model. We made some error analysis for this
situation and found that using selective mechanism in both encoder may lead our model ignore
some important information and make “under-translation” problem[27] even worse.
These experiments showed that both our two-encoder architecture and word-level selective

mechanism could bring significant improvement.

5.7 Effects of Problem Length

The sequence to sequence model may face "under-translation" and "over-translation" problems
when the length of input sequence is long enough[27] . So we did did additional experiments on
our model and the baseline models based on sequence to sequence framework to show the effects
of problem length.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:14 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

Fig. 7. Number of logical forms generated by each model in different length of math problems.

We group sentences of similar lengths together and compute sentence-level precision for each
group. As shown in Figure 6, our model outperforms all baseline models on each group. Moreover,
the performance of all models decreases when the length of input problem increases. One main
reason is probably related to the size of each group. We count the number of math problems in each
group and mark it in the Figure 6, the result show that the performance of all models is positively
correlated with the size of each group.

It is noteworthy that when the length of math problem exceeds 40, the performance of all baseline
models deteriorates rapidly and our model is significantly superior to them. What’s more is that the
baseline models are similar to our model in terms of precision in logical form-level, but they lag far
behind our model in terms of recall rate. Due to the above two observations, we suppose that when
the math problem is long enough, these baseline models may have under-translation problems. To
verify this assumptions, we calculate the average number of valid logical forms obtained by each
models and golden output. The results in Figure 7 shown that baseline models gets less valid logical
forms then our model when the length of math problem exceeds 40. Our model works better on
long math problems and can better deal with the under-translation problem.

5.8 Error Analysis

Finally, we analyzed the wrong results of our model and summarized the most common cause of
errors below.

Under-Mapping Although our model can better deal with the under-mapping problem than our
baseline models, it still cannot be completely avoided. Some source words may be ignored in the
decoding process. For example, in some cases our model may get the logical form “Angle(B)” instead
of the gloden output “InteriorAngle(B)”. Taking the alignment history into consideration may be a
good way to solve this problem [27].

Brackets Not Paired We don’t have a good strategy to deal with the problem of "brackets not
paired", although this problem does not occur often. For example, in some cases our model may get
the output “StringOfCircle(C, AC”, but “StringOfCircle(C, AC’)’ is the gloden output. Adding some
rules in our model may be an effective solution [29].

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

A Neural Semantic Parser for Math Problems 15:15

6 CONCLUSION

In this study, we focused on multi-sentence-level semantic parsing and proposed a novel two-
encoder architecture sequence to sequence model to automatically map math problems to their
logical forms. In addition, we designed a word-level selective mechanism that determines the
importance of each source-side word at the embedding layer. A large dataset was constructed
for model training and empirical evaluation. The experimental results showed that both the two-
encoder architecture and word-level selective mechanism could bring significant improvement.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their helpful comments.
This work was partially funded by National Natural Science Foundation of China (No. 61751201,

61532011), and STCSM (No.16JC1420401,17JC1420200).

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align

and translate. arXiv preprint arXiv:1409.0473 (2014).
[2] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Attention. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 33–43.
[3] Jacob Eisenstein, James Clarke, Dan Goldwasser, and Dan Roth. 2009. Reading to learn: Constructing features from

semantic abstracts. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
2-Volume 2. Association for Computational Linguistics, 958–967.

[4] Edward A Feigenbaum, Julian Feldman, et al. 1963. Computers and thought. New York.
[5] Ruifang Ge and Raymond J Mooney. 2005. A statistical semantic parser that integrates syntax and semantics. In Pro-

ceedings of the ninth conference on computational natural language learning. Association for Computational Linguistics,
9–16.

[6] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating CopyingMechanism in Sequence-to-Sequence
Learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vol. 1. 1631–1640.

[7] Jonathan Herzig and Jonathan Berant. 2017. Neural Semantic Parsing over Multiple Knowledge-bases. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2. 623–628.

[8] Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin, Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi. 2017. Beyond
sentential semantic parsing: Tackling the math sat with a cascade of tree transducers. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. 795–804.

[9] Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma. 2016. How well do computers solve math
word problems? Large-scale Dataset construction and evaluation. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 887–896.

[10] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer. 2017. Learning a Neural
Semantic Parser from User Feedback. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vol. 1. 963–973.

[11] Rohit J Kate and Raymond J Mooney. 2007. Learning language semantics from ambiguous supervision. In AAAI, Vol. 7.
895–900.

[12] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. 2017. Neural semantic parsing with type constraints for
semi-structured tables. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
1516–1526.

[13] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. 2014. Learning to automatically solve algebra word
problems. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vol. 1. 271–281.

[14] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. 2017. Neural Symbolic Machines: Learning
Semantic Parsers on Freebase with Weak Supervision. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vol. 1. 23–33.

[15] Christian Liguda and Thies Pfeiffer. 2012. Modeling math word problems with augmented semantic networks. In
International Conference on Application of Natural Language to Information Systems. Springer, 247–252.

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

15:16 Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei

[16] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. 2017. Program Induction by Rationale Generation: Learning
to Solve and Explain Algebraic Word Problems. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vol. 1. 158–167.

[17] Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai, and Noriko H Arai. 2017. Semantic parsing of pre-
university math problems. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vol. 1. 2131–2141.

[18] Arindam Mitra and Chitta Baral. 2016. Learning to use formulas to solve simple arithmetic problems. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 2144–2153.

[19] Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale semantic parsing without question-answer pairs.
Transactions of the Association of Computational Linguistics 2, 1 (2014), 377–392.

[20] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get To The Point: Summarization with Pointer-Generator
Networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vol. 1. 1073–1083.

[21] Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm. 2015. Solving geometry problems:
Combining text and diagram interpretation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. 1466–1476.

[22] Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui. 2015. Automatically solving number word
problems by semantic parsing and reasoning. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. 1132–1142.

[23] Yu Su and Xifeng Yan. 2017. Cross-domain Semantic Parsing via Paraphrasing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 1235–1246.

[24] Raymond Hendy Susanto and Wei Lu. 2017. Neural Architectures for Multilingual Semantic Parsing. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2. 38–44.

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems. 3104–3112.

[26] Lappoon R Tang and Raymond J Mooney. 2001. Using multiple clause constructors in inductive logic programming for
semantic parsing. In European Conference on Machine Learning. Springer, 466–477.

[27] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling Coverage for Neural Machine
Translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vol. 1. 76–85.

[28] Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang, and Wen-tau Yih. 2016. Learning from explicit and implicit
supervision jointly for algebra word problems. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. 297–306.

[29] Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017. Deep Neural Solver for Math Word Problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing. 845–854.

[30] Yuk Wah Wong and Raymond J Mooney. 2006. Learning for semantic parsing with statistical machine translation. In
Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics. Association for Computational Linguistics, 439–446.

[31] William A Woods. 1973. Progress in natural language understanding: an application to lunar geology. In Proceedings of
the June 4-8, 1973, national computer conference and exposition. ACM, 441–450.

[32] John M Zelle and Raymond J Mooney. 1996. Learning to parse database queries using inductive logic programming. In
Proceedings of the national conference on artificial intelligence. 1050–1055.

[33] Luke Zettlemoyer and Michael Collins. 2007. Online learning of relaxed CCG grammars for parsing to logical form.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

[34] Luke S Zettlemoyer and Michael Collins. 2005. Learning to map sentences to logical form: structured classification with
probabilistic categorial grammars. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence.
AUAI Press, 658–666.

[35] Yuchen Zhang, Panupong Pasupat, and Percy Liang. 2017. Macro Grammars and Holistic Triggering for Efficient
Semantic Parsing. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 1214–1223.

[36] Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015. Learn to solve algebra word problems using quadratic programming.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 817–822.

[37] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2017. Selective Encoding for Abstractive Sentence Summarization.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Vol. 1. 1095–1104.

accepted January 2019

ACM Trans. Web, Vol. 9, No. 4, Article 15. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem statement
	3.1 Neural Sequence to Sequence Modeling
	3.2 Two-Encoder Architecture and word-level selective mechanism

	4 Approach
	4.1 Word Representation
	4.2 Two-Encoder Architecture
	4.3 Word Level Selective Mechanism
	4.4 Joint Attention Mechanism
	4.5 Semantic Decoder
	4.6 Objective Function

	5 Experiments
	5.1 Dataset
	5.2 Baseline
	5.3 Experimental Settings
	5.4 Implementation Details
	5.5 Main Results
	5.6 Effects of two-encoder architecture and word-level selective mechanism
	5.7 Effects of Problem Length
	5.8 Error Analysis

	6 Conclusion
	Acknowledgments
	References

