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Abstract—Taking several topic words and a math expression as
input, the aim of math word problem generation is to generate
a problem that can be answered by the given expression and
related to these topic words. Considerable progress has been
achieved by sequence-to-sequence neural network models in
many natural language generation tasks, but these models do not
effectively consider the characteristics of the math word problem
generation task. They may generate problems that are unrelated
to the topic words and expressions, and problems that cannot be
solved. In this paper, we propose a new model, MWPGen, for
automatically generating math word problems. MWPGen has
a topic-expression co-attention mechanism to extract relevant
information between topic words and expressions. Further, we
fine-tune MWPGen with the solving result of the generated
problem as the reward for reinforcement learning. MWPGen
shows improved performance in popular automatic evaluation
metrics and improves the solvability of generated problems.

Index Terms—Math Word Problem Generation, Problem Gen-
eration, Natural Language Generation, Math Word Problem.

I. INTRODUCTION

Math word problem generation is a novel task in natural
language generation studies. Math word problems are widely
used to facilitate education [1], [2] and in the development
of large-scale datasets. In the elementary education stage,
teachers need to construct or find a large number of math
word problems for students’ daily homework and regular tests.
Automatic problem generation can assist teachers in their
work and reduce their burden. Existing large-scale math word
problem (MWP) datasets, like Math23K [3], are typically con-
structed by crawling web forums or expanding hand-crafted
templates, which leads to high-cost annotation requirements
or limited problem categories, respectively. The number of
math word problems available from the web forums and hand-
crafted templates is limited, but automatic problem generation
can help people generate large-scale datasets, which expands
the dataset capacity and reduces the annotation cost. Taking
several topic words and a math expression as input, the task
aims to generate a math word problem related to these topic
words, and this problem can be solved to obtain the original
math expression, as shown in Fig. 1. Without topic words, it is
difficult for the model to automatically generate various math
word problems using only math expressions. Here, we use
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Topic words: purchase, desk, chair

Math expression: N0 * ( N1 + N2 )

Ground truth: An elementary school bought N0 sets 

of desks and chairs. Each desk cost N1 and each chair 

cost N2. How much did this elementary school spend 

on desks and chairs?

Topic irrelevant problem: Each apple is worth N0. 

Alan bought N1 red apples and N2 green apples. How 

much did he spend?

Expression irrelevant problem: An elementary 

school bought N0 sets of desks and chairs for N1. Each 

chair cost N2. How much did each desk cost?

Unsolvable problem: An elementary school bought 

N0 sets of desks and chairs. Each desk cost N1 and 

each chair cost N2. How much did this elementary 

school spend on books?

Fig. 1. An example in which topic words and a math expression are needed
to generate a corresponding math word problem. Several bad cases are shown
that may be generated by the model.

topic words to help the model generate problems and post-
verify the generated results. In recent years, neural network
models have achieved good performance in many natural
language generation tasks, such as machine translation [4], [5],
reading comprehension [6], dialogue generation [7], [8], and
image captioning [9], [10]. Zhou and Huang proposed a neural
network model called MAGNET for generating math word
problems, which encodes topic words and math expressions
separately, and uses both topic and expression information to
generate problems [11].

Although existing methods have achieved promising results,
they do not effectively consider the characteristics of math
word problem generation task. As this task must generate com-
plete problems that are associated with given topic words and
math expressions, the problems generated by these methods
can face a number of issues: 1) The math word problems
they generate may not be related to the given topic words and
expressions. As shown in the examples in Fig. 1, the “topic
irrelevant problem” does not consider the given topic words,
and the “expression irrelevant problem” cannot be solved to
obtain the original math expression. In this case, the model
tends to generate general problems for different inputs. 2)
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The math word problems they generate may not be complete
and solvable. When a key entity in the problem is wrong, the
problem cannot be solved. As shown in the example in Fig.
1, the “unsolvable problem” asks for the price of “books”
not mentioned in the previous text, which makes this problem
unsolvable.

To address these issues, we propose the novel model MW-
PGen for automatically generating math word problems. First,
we propose a topic-expression co-attention mechanism that
extracts the correlated information between topic words and
expressions, which enables the model to generate problems
related to both inputs. We also convert the math expression
into a pre-order traversal sequence of the expression tree
and use adjacent node embeddings in the expression tree as
additional embeddings. In this way, the model can capture
structure and global semantic information of the math ex-
pression. Furthermore, we use a state-of-the-art math word
problem solver to obtain math expression that corresponds to
the generated problem, and determine whether this expression
is the same as the original expression. To fine-tune our model,
we use the results of the problem solver as rewards and apply
reinforcement learning.

Our contributions can be summarized as follows:
• We propose a novel model for generating math word

problems. The model has a topic-expression co-attention
mechanism that can effectively extract correlated infor-
mation between topic words and expressions. It also
uses adjacent node embeddings in the expression tree as
additional embeddings to capture the structure and global
semantic information of the math expression.

• We use reinforcement learning to further fine-tune the
model. We use a math word problem solving model
to solve the generated problems, and use the results as
rewards in reinforcement learning.

• We conducted experiments on a large-scale math word
problem dataset and the results confirmed that the pro-
posed model MWPGen outperformed baselines on popu-
lar automatic evaluation metrics. The results of the math
word problem solving experiments also prove that the
problems generated by MWPGen are more complete and
solvable than those generated by other baseline models.
In addition, human evaluation verified that these problems
are more related to the given topic words and math
expressions.

II. MODELS

In this section, we first describe the task of math word
problem generation. Then, we introduce our proposed model
MWPGen for generating math word problems. As shown in
Fig. 2, the whole framework comprises a math word problem
generator and a math word problem solver, the procedure for
which is as follows: (1) The math word problem generator
generates a problem for the given topic words and expression;
(2) the generated problem is then sent to the solver to
obtain its corresponding expression, and (3) the generated and
original expressions are compared to produce a reward for
reinforcement learning to fine-tune the MWPGen model.

A. Problem Definition

Given a topic word list Xo = {xo
1, x

o
2, . . . , x

o
l } and a math

expression Xe = {xe
1, x

e
2, . . . , x

e
m}, the generation task is to

generate a math word problem Y= {y1, y2, . . . , yn}, which is
a sequence of n words related to the given topic words Xo that
can be solved by the math expression Xe. Here, l and m are
the respective lengths of Xo and Xe. Our goal is to estimate
the probability distribution:

P(Y|Xo,Xe) =

n∏
t=1

P(yt|y<t,X
o,Xe). (1)

In this way, given a new input data pair (Xo,Xe), we can
generate a new math word problem Y based on P(Y|Xo,Xe).

B. Math Word Problem Generator

Encoder:
Our model accepts two inputs, a topic word list Xo and a

math expression Xe, each of which is a sequence of words.
We embed the words xo

i , x
e
j in these two sequences as word

embeddings e(xo
i ), e(x

e
j) through a word embedding layer.

Additional embeddings for math expression:
The math expression can be converted into a binary tree

structure with operators as internal nodes and numbers as
leaf nodes. The goal of the model is to generate a pre-order
traversal sequence of this expression tree. To better capture
the structure and global semantic information of the math
expression, we use the parent and child nodes of each word
in the expression tree as additional embeddings, as shown in
Fig. 3. We use this embedding strategy for two reasons. First,
pre-ordered math expressions can better implicitly model tree
structures than middle-ordered math expressions [12], [13].
Second, it can better capture long-distance dependencies. For
example, in the math expression “(N0*N1)/(N2+N3)”, the
operator “/” directly depends on its child operators “*,+”
instead of its nearby words “N1,), (, N2 ”. Therefore, we use
these adjacent node embeddings of the word in the expression
tree as additional embeddings.

Then, we use two-layer bidirectional long short-term mem-
ory (BiLSTM) [14] to obtain the hidden states of each word
in the math expression. The hidden states he

i are updated as
follows:

he
i = BiLSTM(e(xe

i , x
e
i,p, x

e
i,l, x

e
i,r),h

e
i−1), (2)

where e(xe
i , x

e
i,p, x

e
i,l, x

e
i,r) are the embeddings of the i-th

word and its parent, left child, and right child in the expression
tree, respectively, as shown in Fig. 3. We obtain the forward
hidden states

−→
he
i and backward hidden states

←−
he
i by reading

expression Xe in the forward and backward directions. We
define the hidden states of the math expression he

i as the
concatenation of the forward and backward hidden states, i.e.,
he
i = [

−→
he
i :
←−
he
i ].

Topic-Expression Co-attention Mechanism:
We propose a topic-expression co-attention mechanism to

generate a co-attention matrix M for the topic word embed-
dings e(xo) and the expression hidden states he:

Mij = tanh(U e(xo
i )⊗ hej ), (3)
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Fig. 2. Overview of our Math Word Problem Generation (MWPGen) network. (Left) Math word problem generation model. (Right) Math word problem
solving model. The model is finally fine-tuned by rewards that are based on the similarity between the expression predicted by the MWP solving model and
the original math expression.
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Fig. 3. An expression tree and the input embeddings of the math expression
“(N0*N1)/(N2+N3)”. The input sequence is the pre-order traversal sequence
of the expression tree. The input embeddings are a concatenation of the current
word embeddings, parent embeddings, left-child embeddings, and right-child
embeddings. “-” indicates that the current word has no parent or child nodes.

where ⊗ is a cross product function and U ∈ Rd×d is a
weight matrix. In the co-attention matrix M ∈ Rl×m×d, l
is the number of topic words, m is the length of the math
expression, and d is the is the dimension of the hidden states.

We use this co-attention matrix M to compute topic-aware

expression hidden states and expression-aware topic hidden
states:

αo
ij = softmax(max pooling(M))∈ Rl×m,

αe
ij = softmax((max pooling(M))T)∈ Rm×l,

ĥo
i =

l∑
j=1

αo
ije(x

o
j), ĥe

i =

m∑
j=1

αe
ijh

e
j .

(4)

Here, the max pooling(·) : Rl×m×d → Rl×m runs on the last
dimension of matrix M. αo

ij and αe
ij are co-attention weights

distribution on the topic words and the math expression.
The final hidden states for the topic words and expression

are as follows:

roi = [e(xo
i ) : ĥ

o
i ], rei = [he

i : ĥe
i ]. (5)

Here, [:] is the concatenation operation.
Decoder:

Given the last hidden states he
m of the expression as the

initial hidden state s1 of the decoder, we use a one layer LSTM
to generate the math problem. The hidden state st is updated
as:

st = LSTM([e(yt−1), ct], st−1). (6)
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Here, st−1 and e(yt−1) are the decoder hidden state and the
embedding of the generated word in the last time step. ct is
the context vector obtained by the attention mechanism [5].
Taking the topic word hidden states roi and the expression
hidden states rei from the encoder, and last decoder hidden
state st−1, we can obtain ct as:

αti = softmax(tanh(Wh[r
o
i : rei ] +Wsst−1)),

ct =

l+m∑
i=1

αti[r
o
i : rei ],

(7)

where Wh and Ws are the weight matrices. αti denotes the
attention distribution on the hidden states ro and re at time
step t.

Finally, using the context vector ct and hidden state st, the
probability distribution of generating yt is calculated as:

P(yt|y<t,X
o,Xe) = softmax(Wg[st : ct]),

Lloss = −
∑n

t=1
logP(yt|y<t,X

o,Xe).
(8)

During training, we optimized the probability of generating
yt with a cross-entropy loss function. During the test, we used
beam search to generate the problem. We set the beam size
to 5. At the first time step, we selected the top 5 words with
the highest probability under the current distribution as the
first word of the 5 candidate output sequences. Subsequently,
at each time step, based on the candidate output sequences
of the last time step, we selected the top 5 words with the
highest probability under the current distribution. Finally, the
sequence with the highest probability was selected from the 5
candidate sequences as the generated problem.

C. Math Word Problem Solver

After generating a math word problem Y= {y1, y2, . . . , yn},
Y is sent to a pre-trained math word problem solver (MWP
solver) to obtain its math expression. The structure of this
MWP solver is shown below.
Encoder:

The MWP solver takes the generated problem Y as input,
encodes this sequence, and then passes it to a two-layer
bidirectional LSTM:

hp
i = BiLSTM(e(yi),h

p
i−1). (9)

Decoder:
Following the method proposed by [13], we use a tree-

structured gated recurrent unit (GRU) [15] decoder with an
attention mechanism to generate math expressions in a pre-
order traversal from top to bottom:

spt = GRU(e(et−1, et,p, et,l), c
p
t , s

p
t−1)

αp
ti = softmax(Wss

p
t−1 +Whh

p
i )

cpt =
∑n

i=1
αp
tih

p
i .

(10)

At time step 1, we use the last hidden states hp
n of the

generated problem to initialize the decoder state sp1 . Here,
et−1,et,p and et,l represent the output words of the last node,
parent node, and left sibling node of the current node et,
respectively. If the current node does not have a parent node

or left sibling node in the generated expression tree, we pad
it with a PAD token.

In addition, we introduce a copying mechanism [16] to
enable the model to either generate a word et from the
vocabulary V or copy a word from the input problem Y.
At time step t, based on the context vector cpt and the
decoder state spt , this mechanism calculates a copy gate value
gp ∈ [0, 1] to determine whether the word et is generated or
copied:

gp = σ(Wss
p
t +Wcc

p
t ),

Pc(et) =
∑

et=yi

αp
ti,

Pg(et) = softmax([Wgs
p
t : cpt ]),

P(et|e<t,Y) = gpPc(et)+(1−gp)Pg(et),

(11)

where Ws, Wc and Wg are weight matrices and σ is a
sigmoid function. We obtain the final probability distribution
P(et|e<t,Y) over both the generate distribution Pg(et) and
copy distribution Pc(et).

During the test, at each time step, if et is an operator,
this means that the current node is an internal node, and the
decoder continues to generate its left child nodes. If et is a
number, it is a leaf node, so the decoder will generate right
child nodes for the previous internal nodes. Once the children
of all the internal nodes have been generated, the generated
expression sequence E= {e1, e2, . . . , en′} can be transformed
into a complete tree and the decoding process is terminated.

D. Reinforcement learning

In each training iteration, we first use MWPGen to generate
the math word problem Y based on the topic words Xo and
expression Xe, and then use the MWP solver to generate the
math expression E based on Y. We use reinforcement learning
[17] to fine-tune our model.

To do so, we define r(y) = exp(E,Xe) + ans(E,Xe)
as a reward function for the generated problem Y, which
is obtained by checking the expression correctness and the
answer correctness between the generated expression E and
the original expression Xe. If these two expressions are the
same, the exp(E,Xe) is set to 1, otherwise it is 0. If these two
expressions can be executed to produce the same answer, the
ans(E,Xe) is set to 1, otherwise it is 0. We also consider the
correctness of the answer because the model may generate a
correct expression but differ from the original expression, e.g.,
if the generated expression is “4+5” but the original expression
is “5+4”.

The loss function for this reinforcement learning is defined
as:

LRL=−(r(ys)−r(y∗))
∑

logP(et|e<t,Y). (12)

r(ys) is the reward for the generated problem Y and r(y∗) is
a baseline reward to reduce the variance. Like the self-critical
sequence training (SCST) strategy [18], y∗ is estimated by
using the greedy search results of the MWPGen model.
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TABLE I
STATISTICAL ANALYSIS OF THE MATH23K DATASETS. lo, le, lp ARE THE

RESPECTIVE AVERAGE LENGTHS OF THE TOPIC WORDS, EXPRESSION, AND
PROBLEM.

Num lo le lp

Train 18,530 3.74 5.54 29.38
Test 4,652 3.74 5.61 29.82

E. Training

To jointly train the generation model with the above two
loss functions, we minimize the total loss during the training:

Ltotal = (1−β)Lloss + βLRL (13)

where β controls the magnitude of the reinforcement loss. By
minimizing the above loss function, our model can be expected
to generate complete and solvable math word problems.

III. EXPERIMENT

A. Dataset

We evaluated our model on the Math23K [3] dataset, which
contains 23,196 math word problems along with matching
math expressions and answers. We filtered from this dataset
any expressions that could not be executed to generate an
answer, which reduced the size of the dataset to 23,182.

For the math word problem generation task, each problem-
expression pair requires a corresponding topic word list. To
simulate the real-world situation in which teachers create math
word problems, for each problem, we provided a topic word
for the problem domain and several topic words for the entities
in the problem. The methods we used to select topic words
are as follows:
Topic words for the problem domain:

We divided this dataset into 20 domains, e.g., “Engineering,
Geometry, Purchase, Fraction”. For each problem, we simply
checked whether this problem contains the keywords of each
domain, as described in [12]. If the problem contained none
of the domain keywords, we set the domain topic word of the
problem to “Other”.
Topic words for the problem entities:

We detected entities in the problem using Hownet [19], i.e.,
a knowledge graph about Chinese words and concepts. We
selected the nouns in Hownet as our entity vocabulary. If none
entity in the vocabulary was detected in the problem, we did
not provide any entity topic word for this problem. If there
are more than four entities were detected in the problem, we
randomly selected four of them as entity topic words.

Finally, we provided one domain topic word and from zero
to four entity topic words for each problem, with the average
length of the topic word list being 3.74. Here, we use topic
words and math expressions as input, and math word problems
as output. For evaluation, we randomly split the dataset into
training and test sets at a 80:20 ratio. Table I shows statistical
details of the dataset.

B. Implementation Details

We used Pytorch for our implementation1. We choose words
that appear more than 5 times in the training set or appear
as topic words to build a vocabulary V, and replace words
that are not in the vocabulary with a UNK token. The size
of vocabulary is 3,550. The word embedding dimension is
128 and the hidden dimension of the encoder and decoder is
256. The batch size is 64, and the learning rate of the Adam
optimizer [20] is 0.001. We set β in our loss function to 0.5,
and dropout rate [21] is 0.5.

During training, first, we trained 200 epochs of the math
word problem solver described in Section II-C. Then, we
trained 200 epochs of the proposed MWPGen model. During
decoding, we used a beam search with a beam size of 5. We
used the same parameter settings to train the baselines and our
MWPGen.

C. Baselines

Here, we compare the performance of our model with the
following baselines.

• Seq2Seq [5] is based on a sequence-to-sequence
(seq2seq) model with attention mechanism. Seq2Seq con-
sists of a two-layer bidirectional LSTM encoder and a
LSTM decoder with attention mechanism. We send topic
words and math expressions to the encoder in order, and
the topic words and expressions are separated by a EOS
token. In fact, the baseline can be seen as a ablation model
of MWPGen without the adjacent node embeddings in the
expression tree, the topic-expression co-attention mecha-
nism and reinforcement learning. The only difference left
is that MWPGen encodes the expression and topic words
separately.

• ConvS2S [22] is based on a convolutional seq2seq
network. It has the same input, decoder and attention
mechanism as the Seq2Seq baseline. In the convolutional
layer, it has filters of length 1, 3, 5, and 7. All hyper-
parameter settings are the same as for the MWPGen.

• NQG++ [23] is a seq2seq model with copy and attention
mechanisms. We use the same topic words and math
expression input as the Seq2Seq baseline. To use it in the
math word problem generation task, we removed features
about the answer position and lexical information.

• MAGNET [11] is a GRU-based seq2seq model with a
maxout layer and entity-enforced loss. It encodes topic
words and math expressions separately, and uses both
topic and expression information to generate math word
problems. They use entity forced loss to ensure that enti-
ties in the input appear in the generated math problems.
We use a two-layer bidirectional LSTM in place of a
GRU encoder for a fairer comparison with our model.

D. Results

We employed the automatic metrics BLEU (1-4) [24],
ROUGE-L [25], and CIDEr [26] to evaluate the n-gram
similarity between the generated problems and the ground

1https://pytorch.org/
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TABLE II
EVALUATION RESULTS ON AUTOMATIC METRICS. THE BEST SCORE OF

EACH METRIC IS HIGHLIGHTED IN BOLD.

Model BLEU1 BLEU2 BLEU3 BLEU4 Rouge L CIDEr

Seq2Seq [4] 0.5554 0.4303 0.3498 0.2914 0.5498 2.2446
ConvS2S [22] 0.5395 0.4147 0.3347 0.2767 0.5384 2.1028
NQG++ [23] 0.5511 0.4260 0.3459 0.2881 0.5466 2.2190
MAGNET [11] 0.5676 0.4383 0.3544 0.2937 0.5524 2.2596

MWPGen 0.5658 0.4448 0.3638 0.3037 0.5659 2.3166

TABLE III
SOLVABILITY OF THE GENERATED MATH WORD PROBLEMS. EVALUATED
BY A STATE-OF-ART MATH WORD PROBLEM SOLVING MODEL GTS [13].

THE BEST SCORE OF EACH METRIC IS HIGHLIGHTED IN BOLD.

Model Expression Answer

Ground Truth 63.43% 75.75%

Seq2Seq [4] 51.42% 60.25%
ConvS2S [22] 43.54% 52.14%
NQG++ [23] 47.06% 55.59%
MAGNET [11] 55.57% 62.85%

MWPGen 57.71% 66.43%

truths. These automatic evaluation metrics reflect the fluency
of the generated problem. However, they have limited abilities
to reflect the solvability and completeness of the generated
problem. For example, for the ground truth “each apple costs
me N1”, here are two sentences: Sentence A “I spent N1
on each apple” and Sentence B “each desk costs me N1”.
Sentence A has the same meaning as the ground truth, but it
is not as close to the ground truth as Sentence B, which may
result in a lower evaluation score.

To further evaluate the quality of the generated problems,
we used a pre-trained math word problem solving model to
solve the generated problems and checked whether the results
obtained were the same as the original math expressions and
answers. In this study, we used the state-of-the-art model
GTS released by [13] for math word problem solving. It is
a sequence-to-tree model that uses math word problems as
input and generates expression trees from top to bottom.

The evaluation metrics include expression accuracy and
answer accuracy, indicating whether these mathematical prob-
lems can be solved to obtain the original expression and
the original answer. For example, the generated expression is
“4+5” and the original expression is “5+4”, which indicates
that solving this problem has obtained a wrong expression and
a correct answer. Therefore, the answer accuracy is always
higher than the expression accuracy because sometimes the
model generates a correct result with an expression different
from the original one.

Table II shows the automatic metric evaluation results of our
model compared with other baselines. Using problems gener-
ated by the different baselines as inputs, Table III shows the
accuracies of the expressions and answers to these problem.
We have the following observations:

1) Seq2Seq model performed slightly better than the
NQG++ on automatic metrics, and its solvability is
better than NQG++. We believe this is because the copy

TABLE IV
HUMAN EVALUATION RESULTS. THESE METRICS ARE RATED ON A 1-3

SCALE (3 FOR THE BEST). THE BEST SCORE OF EACH METRIC IS
HIGHLIGHTED IN BOLD.

Model Fluency Completeness Expression Topic Words
Accuracy Relevance

Seq2Seq [4] 2.49 2.41 1.98 2.51
ConvS2S [22] 2.37 2.49 1.98 2.33
NQG++ [23] 2.45 2.50 1.94 2.39
MAGNET [11] 2.19 2.27 2.01 2.69
MWPGen 2.62 2.54 2.18 2.51

mechanism of NQG++ will copy keywords directly from
inputs during the generation process. This mechanism
may reduce the fluency and solvability of the generated
problems.

2) MAGNET performed better than other baselines on
automatic metrics and solvability. MAGNET uses entity-
enforced loss to ensure that the entities in the generated
math problem are highly relevant to the words in the
given input. Although this additional loss may reduce
the fluency and completeness of the generated problem,
it is helpful for generating topic-related and expression-
related problems.

3) Our proposed model MWPGen achieves competitive re-
sults compared with baselines on the automatic metrics.
In addition, the solvability of the problems generated
by MWPGen is better than these baselines. The ob-
servations in the next section also confirm the fluency
and completeness of the problems generated by the
proposed model. We attribute these improvements to the
combination of all three components in MWPGen.

E. Human Evaluation

In addition, we can see that automatic evaluation metrics
and problem solving model accuracies are not always related
to human judgments on the correctness of a math word
problem, human evaluation can help us to better evaluate its
quality. We conducted human evaluation comparing generation
problems from the baselines mentioned above and our model.
Specifically, we consider four metrics in human evaluation:

• Fluency measures whether a problem is grammatically
correct and is fluent to read.

• Completeness measures whether a problem has a clear
question clause, and provides enough information in the
description part to solve the question.

• Expression Accuracy measures whether a problem can
be solved to obtain the given math expression.

• Topic Words Relevance measures whether a problem is
relevant to all given topic words.

For human evaluation, we used the baselines mentioned above
to compare with our model. We randomly selected 100 pairs
of topic word lists and math expressions from the test set, and
asked 3 native speakers to evaluate the generated problems of
each model. For each metrics, we ask the reviewer to rate the
problems on a 1-3 scale (3 for the best).
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TABLE V
ABLATION STUDY OF THE ADJACENT NODE EMBEDDINGS IN THE EXPRESSION TREE. THE BEST SCORE OF EACH METRIC IS HIGHLIGHTED IN BOLD.

Model BLEU1 BLEU2 BLEU3 BLEU4 Rouge L CIDEr Expression Answer

MWPGen-base (seq2seq) 0.5654 0.4440 0.3632 0.3032 0.5657 2.3100 50.52% 60.75%
MWPGen-base with GCN 0.5647 0.4442 0.3638 0.3040 0.5646 2.3247 49.27% 59.78%
MWPGen-base with TreeLSTM 0.5375 0.4133 0.3332 0.2751 0.5378 2.1175 38.82% 46.37%

MWPGen-base with AdjEmb 0.5663 0.4459 0.3654 0.3054 0.5677 2.3392 53.50% 63.06%

MWPGen without AdjEmb 0.5643 0.4422 0.3609 0.3007 0.5649 2.3046 56.00% 65.05%
MWPGen without AdjEmb, with GCN 0.5658 0.4439 0.3625 0.3022 0.5656 2.3201 56.26% 64.57%
MWPGen without AdjEmb, with TreeLSTM 0.5420 0.4181 0.3379 0.2797 0.5434 2.1409 45.85% 52.37%

MWPGen 0.5658 0.4448 0.3638 0.3037 0.5659 2.3166 57.71% 66.43%

Results of each human evaluation metric are presented in
Table IV. We can see that:

1) As for Topic Words Relevance, MAGNET gets the best
score. MAGNET also achieved competitive results in
Expression Accuracy. But for Fluency and Complete-
ness, MAGNET does not perform as well as other
baselines. The reason for this may be that its entity-
enforced loss module force MAGNET to generate solv-
able problems containing words from the input, but
makes the generated problems unnatural or incomplete.

2) For Fluency and Topic Words Relevance, ConvS2S does
not perform as well as other baselines. Human evaluation
found that compared with other baselines, ConvS2S
generated simpler and shorter problems. These problems
are usually not related to the topic words. Therefore,
even if ConvS2S is competitive on Completeness and
Expression Accuracy, we still believe that ConvS2S does
not perform as well as other baselines.

3) MWPGen gets the best or competitive performance
in each metric. It achieves the best performance on
Fluency, Completeness and Expression Accuracy. We
attribute the superior performance of MWPGen to two
properties: MWPGen uses adjacent node embeddings in
the expression tree, and thus better captures the structure
and global semantic information of the math expres-
sion. MWPGen uses the quality and solvability of the
generated problems as rewards to fine-tune the model,
which can improve the score of expression accuracy. In
this way, these two properties improve the expression
accuracy of MWPGen. In addition, the rewards of rein-
forcement learning promote that the generated problems
can be processed by the MWP solving model, which also
greatly improves the fluency of MWPGen and slightly
improves the completeness.

F. Ablation study

Effect of adjacent node embeddings in the expression
tree: To verify the effectiveness of the adjacent node embed-
dings in the expression tree, we first conduct an ablation study
on the adjacent node embeddings. Table V shows evaluation
results for several variants of our proposed model on Math23K
dataset. The definitions of the models under comparison are:

• MWPGen-base: It is a ablation model of MWPGen
without the adjacent node embeddings in the expression

tree, the topic-expression co-attention mechanism and
reinforcement learning. It can be seen as a basic sequence
to sequence model.

• MWPGen-base with AdjEmb: It adds adjacent node
embeddings in the expression tree to the “MWPGen-
base” for better comparison.

• MWPGen without AdjEmb: It is a ablation model of
MWPGen which remove the adjacent node embeddings
of the current word in the expression tree.

• MWPGen: It is the complete version of our proposed
model with all three components.

In addition, we explored two other popular approaches to
capture the structure and global semantic information of the
math expression, as follows:

• Graph Convolutional Network (GCN) [27]: We use
a two-layer graph convolutional network in place of
the adjacent node embeddings for a fairer comparison
with our model. Math expressions are converted into
expression trees, where operators are internal nodes and
numbers are leaf nodes. We use GCN to update the node
state by aggregating its neighbor nodes in the expression
tree.

• Tree-LSTM [28]: We use a Tree-LSTM in place of
our bidirectional LSTM encoder. Tree-LSTM trans-
form LSTM from chain-like to tree-like structures. This
bottom-up hierarchical tree-structured encoder composes
the node state according to the input embedding and the
node states of its child nodes in the expression tree.

From Table V we can see:
1) Models with Tree-LSTM perform worse than all other

variants. We believe this is because Tree-LSTM transfers
the node state in one direction. Instead of obtaining
global information from the entire math expression, each
node only obtains information from its own subtree.

2) Models with GCN show competitive performance com-
pared to models without GCN, and show improvements
in some metrics such as BLEU4 and CIDEr. We believe
that both BiLSTM and GCN can capture the structure
and global semantic information of the math expression.
In this article, we use BiLSTM because it is simpler.

3) With adjacent node embeddings from math expression
trees, MWPGen and MWPGen-base achieved competi-
tive scores on automatic metrics, while also achieving
higher accuracy on the problem solver. This shows
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TABLE VI
ABLATION STUDY OF THE TOPIC-EXPRESSION CO-ATTENTION MECHANISM. THE BEST SCORE OF EACH METRIC IS HIGHLIGHTED IN BOLD.

Model BLEU1 BLEU2 BLEU3 BLEU4 Rouge L CIDEr Expression Answer

MWPGen-base (seq2seq) 0.5654 0.4440 0.3632 0.3032 0.5657 2.3100 50.52% 60.75%
MWPGen-base with CoAtt 0.5675 0.4454 0.3632 0.3024 0.5651 2.2996 54.23% 62.80%
MWPGen without CoAtt 0.5548 0.4343 0.3546 0.2956 0.5603 2.2834 55.89% 65.35%

MWPGen 0.5658 0.4448 0.3638 0.3037 0.5659 2.3166 57.71% 66.43%

TABLE VII
ABLATION STUDY OF REINFORCEMENT LEARNING. THE BEST SCORE OF EACH METRIC IS HIGHLIGHTED IN BOLD.

Model BLEU1 BLEU2 BLEU3 BLEU4 Rouge L CIDEr Expression Answer

MWPGen-base (seq2seq) 0.5654 0.4440 0.3632 0.3032 0.5657 2.3100 50.52% 60.75%
MWPGen-base with RL 0.5548 0.4343 0.3546 0.2956 0.5603 2.2834 52.98% 62.46%
MWPGen without RL 0.5694 0.4475 0.3655 0.3049 0.5669 2.3094 55.29% 64.23%

MWPGen 0.5658 0.4448 0.3638 0.3037 0.5659 2.3166 57.71% 66.43%

that the adjacent node embeddings introduce additional
structural information, which helps to generate problems
more related to expressions.

4) We also noticed that the model “MWPGen” performs
worse than “MWPGen-base with Adjacent” on auto-
matic metrics such as BLEU, and we will explain this
situation in the following ablation study on reinforce-
ment learning.

These observations further verifies the effectiveness of the
adjacent node embeddings of expressions.

Effect of topic-expression co-attention: Our model imple-
ments topic-expression co-attention in the model to generate
math word problems related to both topic words and math ex-
pressions. To better understand the effectiveness of the topic-
expression co-attention mechanism, we conduct an ablation
study on the topic-expression co-attention mechanism.

As shown in Table VI, with the topic-expression co-attention
mechanism, the performance of MWPGen and MWPGen-base
is improved. This result proves the effectiveness of this co-
attention mechanism. We believe that the topic-expression co-
attention mechanism enables the model to extract the corre-
lated information between topic words and expressions, and
generate problems related to both inputs. This demonstrates
the beneficial effect of using the topic-expression co-attention
mechanism.

Effect of reinforcement learning: To measure the effect
of reinforcement learning, we conduct an ablation study:
our proposed model MWPGen and vanilla seq2seq model
MWPGen-base are trained without the perceptual loss, shown
in Table VII. We can see that, with reinforcement learning, the
MWPGen’s BLEU4 points would be reduced to 0.3037, and
similar reductions have also appeared on other automatic met-
rics. However, the performance of model on problem solving
evaluations are greatly improved, with an increment of more
than 2% expression accuracy and answer accuracy. Tables V
and VI show similar results. The model “MWPGen” performs
worse than “MWPGen-base with Adjacent” and “MWPGen-
base with CoAtt” on automatic metrics, but it achieves higher
problem solving accuracy.

We believe that reinforcement learning promotes the model

TABLE VIII
ABLATION STUDY OF THE NUMBER OF KEYWORDS. THE BEST SCORE OF

EACH METRIC IS HIGHLIGHTED IN BOLD.

BLEU1 BLEU2 BLEU3 BLEU4 Rouge L CIDEr Expression Answer

0 0.2770 0.1686 0.1232 0.0966 0.3293 0.6772 76.90% 84.67%
1 0.4114 0.2884 0.2224 0.1782 0.4316 1.2118 71.80% 78.00%
2 0.4889 0.3600 0.2839 0.2305 0.4986 1.6912 65.18% 72.37%
3 0.5311 0.4039 0.3239 0.2665 0.5340 2.0079 61.40% 69.28%
4 0.5501 0.4264 0.3457 0.2866 0.5524 2.1758 57.99% 66.49%
5 0.5658 0.4448 0.3638 0.3037 0.5659 2.3166 57.71% 66.43%

to generate more complete and more solvable problems, but
during this process reinforcement learning reduces the scores
of some automatic evaluation metrics, such as BLEU, because
the fine-tuning process may change some n-gram phrases that
appear in the ground truth. Human evaluation also proves our
point. In the human evaluation, MWPGen showed improve-
ment in both fluency and expression accuracy, and showed a
slight improvement on the completeness. Since the model with
reinforcement learning improves the performance on problem
solving metrics and achieves a competitive performance on
the automatic evaluation metrics, we still use reinforcement
learning in our proposed model.

Analysis about topic words of different lengths: To have
a deeper understanding about the effect of the number of topic
words, we reduce the amount of topic words used as input in
the model. Table VIII shows the results of conducted ablation
experiments. First, models that do not provide topic words will
result in the worst performance. Here, the model performance
on the automatic evaluation metrics is very poor, and the
generated problems have an even higher answer accuracy than
the ground truth. Without topic words, the model can only
generate a limited number of math word questions based on
math expressions. Even if these problems can be solved to
obtain the original expressions, we cannot use these repeated
problems to help teachers and expand the data set. Then, as
the number of given topic words increases, the performance of
the model on the automatic evaluation metrics also improves,
while the model performance on the expression and answer
accuracy decreases. This situation may come from having
more initial information, which makes the generated problems
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TABLE IX
EXAMPLES OF GENERATED PROBLEMS WITH DIFFERENT NUMBER OF

TOPIC WORDS AS INPUT.

Topic words: quantity, store, balloons, red, yellow
Expression: ( N0 * N1 ) + N2
Ground Truth: There are N0 red balloons in the store. There are N2
more yellow balloons than N1 times the number of red balloons. How
many yellow balloons are there?
商店 有 红 气球 N0 个 ， 黄 气球 比 红 气球 的 N1 倍 多 N2 个 ，
黄 气球 有 多少 个 ？

Num=0: A number is N2 more than N1 times N0, this number = ?
比 N0 的 N1 倍 多 N2 的 数 = ?
Num=1: How many with N2 =N0 * N1.
多少 和 N2 = N0 * N1 ．
Num=2: A store bought N0 boxes of apples. The number of pears they
bought is N2 more boxes than N1 times the number of apples. How
many boxes of pears did they buy?
商店 运 来 苹果 N0 箱 ， 运 来 的 梨 比 苹果 的 N1 倍 还 多 N2
箱 ， 运 来 梨 多少 箱 ？

Num=3: The store has N0 packs of colorful balloons, and there are N1
colorful balloons in each pack. With N2 white balloons, how many
balloons are there in the store?
商店 有 花 气球 N0 包 ， 每包 N1 个 . 还有 白 气球 N2 个 ， 商店
有 气球 多少 个 ？

Num=4: There are N0 red balloons in the store. The number of yellow
balloons is N1 times of red balloons. There are N2 blue balloons. How
many yellow balloons and blue balloons are there?
商店 里 有 红 气球 N0 个 ， 黄 气球 的 个数 是 红 气球 的 N1 倍
. 商店 里 有 蓝 气球 N2 个 。 黄 气球 和 蓝 气球 一共 多少 个 ？
Num=5: There are N0 yellow balloons in the store. The number of red
balloons is N2 more than N1 times of yellow balloons. How many red
balloons are there in the store?
商店 有 黄 气球 N0 个 ， 红 气球 的 个数 比 黄 气球 的 N1 倍 多
N2 个 ． 商店 有 红 气球 多少 个 ？

more relevant to the topic words and thus closer to the ground
truth. At the same time, more initial information makes the
generated problems more diverse which leads to a decrease in
their expression and answer accuracy.

An example for this effect can be seen in Table IX. We
can see that the more topic words used as input, the more
detailed the problem generated by the model. Problems with
richer input contain more information and are closer to the
ground truth. Human inspection of the results found that
models without topic words as input tend to generate simple
and limited types of math word problems.

However, if the model needs to provide a large number of
topic words as input, there will be an additional workload
for teachers and in the data construction process. Moreover,
when the number of topic words reaches a certain value, the
improvement of the model effect by increasing the number of
topic words is not as obvious. Therefore, we set the length of
a given topic word list in this task to 5.

G. Case Study

Table X lists two example of problems generated by MW-
PGen compared with other baselines.

In Case 1, Seq2Seq does not realize that the topic is about
the number of rabbits, and therefore it generates a problem

TABLE X
TWO CASES OF PROBLEM GENERATED BY MWPGEN COMPARED WITH

OTHER BASELINES.

Case 1: Topic words: quantity, rabbit, white, black
Expression: N1 * N0
Ground Truth: N0 of the number of white rabbits is equal to the
number of black rabbits. There are N1 white rabbits. How many
black rabbits are there?
白兔 只 数 的 N0 等于 黑 兔 的 只 数 ， 白兔 有 N1 只 ， 黑 兔
有 多少 只 ？

Seq2Seq: A number divided by N0 is equal to N1, the number = ?
一 个 数 除以 N0 等于 N1 ， 这个 数 = ？
NQG++: There are N0 white rabbits and N1 black rabbits. How many
black rabbits are there?
白兔 有 N0 只 ， 黑 兔 有 N1 只 ， 黑 兔 有 多少 只 ？ Result: N1
MAGNET: The number of white rabbits is N0 of the black rabbits, and
the number of white rabbits is N1 of gray rabbits. How many white
rabbits are there?
白兔 的 是 黑 兔 的 N0 ， 白兔 的 只 数 是 灰 兔 的 N1 . 白兔 有
多少 只 ？ Result: Unsolvable
MWPGen: The number of black rabbits is N0 of the white rabbits. If
there are N1 white rabbits, how many black rabbits are there?
黑 兔 的 只 数 是 白兔 的 N0 . 白兔 有 N1 只 ， 黑 兔 有 多少 只 ？

Case 2: Topic words: engineering,road, construction, speed, truck
Expression: ( N0 / N1 ) * N2
Ground Truth: During road construction of UNK School, N0 tons of sand were
transported by truck, which accounted for N1 of the daily sand
consumption. Workers accelerated the speed of road construction, so the
daily sand consumption increased by N2. How many tons of sand should
the truck transport every day?
学校 UNK 的 工地 上 在 修路 ， 卡车 已 运来了 N0 吨 沙子 ，正好
占 了 一天 用 沙 量 的 N1 ， 为了 加快 进 度 ， 工人 们 加快 了
修路 的 速度 ， 工地 每天 的 用 沙 量 也 增加 了 N2 ， 卡车 每天
应 多 运 多少 吨 沙子 ？

Seq2Seq: A cow eats N0 kg of grass every day, which accounts for N1
of the total feed. After N2 days, how much feed did the cow eat?
一 头 奶牛 ， 每天 吃 N0 的 草 ， 占 所 吃 食物 总数 的 N1 ， 吃
了 N2 天 ， 这 头 头 一共 吃 多少 ？
NQG++: The road construction team is going to build a N0 meter long
road. The plan is completed within N1 days. In fact, N2 meters are
built every day. How many days will it actually be built?
修路 队 要 修 一条 长 N0 米 的 路 ， 计划 N1 天 修 完 ， 实际
每天 修 N2 米 ， 实际 多少 天 修 完 ？ Result: N0 / N2
MAGNET: Road construction team A builds a road at a speed of N0
km/h, and the construction is completed in N1 hours. Team B will take
N2 more hours to build this road.How long is this road?
甲 修路 队 修 一段路 ， 速度 是 N0 千米 / 小时 ， N1 小时 修 完 ．
如果 是 乙 队 ， 要 再 修 N2 小时 ， 一共 修 了 多少 千米 ？

Result: N0 * N1
MWPGen: The road construction team built a N0 meter long road in N1
days. At this speed, how many meters of road can be built in N2 days?
一 个 修路 队 要 修 N0 千米 的 路 ， 前 N1 天 修 了 全程 的 N2 ，
照 这样 的 速度 ， 还 需要 多少 天 才能 修 完 ？

unrelated to the topic. The problem generated by NQG++ asks
the number of black rabbits already given in this problem. The
problem generated by MAGNET is incomplete and incorrect.

In Case 2, when the given topic is about engineering,
Seq2Seq generates a problem about cow eating grass. The
problems generated by NQG and MAGNET cannot be solved
to obtain the original expression “(N0/N1)*N2”. In this ques-
tion, ground truth is asking about the speed of road construc-
tion after acceleration. The problem generated by MWPGen
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is asking about the length of a road built at a certain speed.
However, the problem generated by MWPGen is related to the
topic and can be solved to generate the given expression.

From these cases, we can see that the problems generated
by Seq2Seq, NQG++ and MAGNET are quite complete and
smooth. However, some of these problems cannot be solved
or do not correspond to the given expressions. Some of
these problems are unrelated to the topic words. Instead, the
proposed MWPGen can generate topic-related problems and
these problems can be solved to obtain given expressions.
These further verify the effectiveness of the topic-expression
co-attention mechanism and reinforcement learning.

IV. RELATED WORK

A. Math Word Problem Generation

Recently, many studies on natural language generation have
attracted a lot of attention, such as machine translation [4], [5],
[29], dialogue generation [7], [8], [30], reading comprehension
problem generation [6], [31], [32],image caption generation
[10], [33], [34].With the development of deep neural networks,
the problem generation task uses neural network structures and
has achieved remarkable results.

Zhou et al. propose a sequence-to-sequence model with at-
tention mechanism and copy mechanism to generate questions
for the text from SQuAD dataset [23]. They enrich the model
with answer position and lexical features. Wu et al. propose
a “read-attend-comment” procedure for news comment gen-
eration and formalize the procedure with a reading network
and a generation network [35]. Zhao et al. propose a novel
document-level approach for question generation by using
multi-step recursive attention mechanism on the document and
answer representation to extend the relevant context [36].

Math word problem generation is the inverse task of the
math word problem solving. It can be widely used in artifi-
cial intelligence testing, data set construction and education
scenarios [1], [2]. Zhou and Huang propose a GRU-based
seq2seq model with a maxout layer and entity-enforced loss
for generating math word problems [11]. This model encode
topic words and math expressions separately, and use both
the topic and expression information to generate problems.
Liyanage and Ranathunga use a BiLSTM model with attention
mechanism to generate math word problems for three different
languages, English, Sinhala and Tamil [37]. However, the
above methods have not effectively considered the character-
istics of math word problem generation tasks.

In this paper, we propose a topic-expression co-attention
mechanism to extract the correlated information between topic
words and expressions. We also leverage the adjacent node
embeddings in the math expression tree to capture the structure
and global semantic information of the math expression.

B. Math Word Problem Solving

Solving math word problems has long been a very popular
task [38], [39] and various methods have been proposed in
the past few years [40], [41].Recent approaches to solve
math word problems usually use the Seq2Seq model [4]
with attention mechanism [5] and copy mechanism [16], [33].

These models are trained to generate math expressions, which
can be executed to generate answers to questions [42], [43].For
instance, DNS [3] first proposed a method based Seq2Seq
model, which directly maps the problem to the corresponding
expression. Liu et al. incorporated a tree structured model
with an auxiliary stack that generates the math expression tree
from top to bottom [12]. Xie and Sun proposed a seq2tree
model to generate each node in the expression tree based
on its parent node and left sibling tree [13]. Recently, many
works that treat math word problems as graphs have also
shown better performance. Zhang et al. connected each number
in the problem with nearby nouns to enrich the problem
representations [44]. Wu et al. connected words that belongs
to the same category in the external knowledge base to capture
common sense information [43]. Li et al. constructed an input
graph from both the math problem and its corresponding
dependency tree to incorporate structural information [45].

For question generation, some methods [46], [47] treat
question answering (QA) and question generation as com-
plementary tasks and jointly train these two tasks. Yuan et
al. feed the generated problem to a QA system and use the
performance of the QA system as a metric of the quality of the
problem [48]. Li et al. jointly trained models on visual question
answering and visual question generation tasks to leverage the
complementary relationship between questions and answers in
images [49]. Deng et al. propose a novel joint learning model
to solve the task of community question answering and answer
summary generation [50].

Inspired by these methods, we use the pre-trained GTS
model [13] to measure our proposed model. We feed the
generated problem to the GTS and use the results to measure
the completeness and solvability of the generated problem.

C. Reinforcement Learning

Recently, some studies have applied reinforcement learning
(RL) to natural language generation tasks [51]–[53].A variety
of reinforcement learning methods have been proposed to
further improve natural language generation learning by lever-
aging reward functions. Rennie et al. presented an optimization
method called self-critical sequence training (SCST), which
normalizes the rewards obtained by sampled sentences and
inference sentences [18]. Chen et al. proposed a RL-based
graph-to-sequence model. This model uses BLEU and word
movers distance (WMD) as reward functions [54]. Wan et al.
proposed a code summarization model based on an abstract
syntax tree structure in a reinforcement learning framework,
and used BLEU scores as reward [55]. For the math word
problem generation task, we solve the generated problems
and compare the results with the given math expressions as
rewards and fine-tune our model by reinforcement learning,
thereby improving the quality and solvability of the generated
problem.

V. CONCLUSION

This paper proposed a novel model MWPGen for the math
word problem generation task. Adjacent node embeddings in
the expression tree were used as additional embeddings to
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capture the structure and global semantic information of the
math expression. A topic-expression co-attention mechanism
was proposed to effectively consider the correlated information
between topic words and expressions. In addition, we used the
quality and solvability of the generated math word problems
as rewards and fine-tuned our model by reinforcement learn-
ing. Experimental results confirmed that the proposed model
MWPGen can generate more complete and solvable problems
than other baselines, and these problems are more related to
the given topic words and mathematical expressions.
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Z. Popović, “Personalized mathematical word problem generation,” in
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[2] R. Koncel-Kedziorski, I. Konstas, L. Zettlemoyer, and H. Hajishirzi,
“A theme-rewriting approach for generating algebra word problems,” in
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016, pp. 1617–1628.

[3] Y. Wang, X. Liu, and S. Shi, “Deep neural solver for math word
problems,” in Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 2017, pp. 845–854.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[6] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question gen-
eration for reading comprehension,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 1342–1352.

[7] B. Pan, H. Li, Z. Yao, D. Cai, and H. Sun, “Reinforced dynamic
reasoning for conversational question generation,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
2019, pp. 2114–2124.

[8] J. Wang, J. Liu, W. Bi, X. Liu, K. He, R. Xu, and M. Yang, “Improving
knowledge-aware dialogue generation via knowledge base question
answering,” arXiv preprint arXiv:1912.07491, 2019.

[9] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
controlled generation of text,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 2017, pp. 1587–1596.

[10] X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing, “Recurrent topic-
transition gan for visual paragraph generation,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 3362–
3371.

[11] Q. Zhou and D. Huang, “Towards generating math word problems
from equations and topics,” in Proceedings of the 12th International
Conference on Natural Language Generation, 2019, pp. 494–503.

[12] Q. Liu, W. Guan, S. Li, and D. Kawahara, “Tree-structured decoding for
solving math word problems,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 2370–2379.

[13] Z. Xie and S. Sun, “A goal-driven tree-structured neural model for
math word problems,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence. AAAI Press, 2019, pp. 5299–
5305.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[16] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing
the unknown words,” Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2016. [Online]. Available: http://dx.doi.org/10.18653/v1/P16-1014

[17] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[18] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 7008–7024.

[19] Z. Dong, Q. Dong, and C. Hao, “Hownet and the computation of
meaning,” 2006.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[22] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” pp. 1243–1252, 2017.

[23] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural
question generation from text: A preliminary study,” in National CCF
Conference on Natural Language Processing and Chinese Computing.
Springer, 2017, pp. 662–671.

[24] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[25] C.-Y. Lin and F. Och, “Looking for a few good metrics: Rouge and its
evaluation,” in Ntcir Workshop, 2004.

[26] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-
based image description evaluation,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 4566–4575.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[28] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,” pp.
1556–1566, 2015.

[29] J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang, and Y. Liu, “Im-
proving the transformer translation model with document-level context,”
in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 533–542.

[30] S. Wu, Y. Li, D. Zhang, Y. Zhou, and Z. Wu, “Diverse and informa-
tive dialogue generation with context-specific commonsense knowledge
awareness,” in Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, 2020, pp. 5811–5820.

[31] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, “Paragraph-level neural question
generation with maxout pointer and gated self-attention networks,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 3901–3910.

[32] B. Liu, M. Zhao, D. Niu, K. Lai, Y. He, H. Wei, and Y. Xu, “Learning
to generate questions by learningwhat not to generate,” in The World
Wide Web Conference, 2019, pp. 1106–1118.

[33] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3156–3164.

[34] Z.-J. Zha, D. Liu, H. Zhang, Y. Zhang, and F. Wu, “Context-aware visual
policy network for fine-grained image captioning,” IEEE transactions on
pattern analysis and machine intelligence, 2019.

[35] Z. Yang, C. Xu et al., “Read, attend and comment: A deep architecture
for automatic news comment generation,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 5080–5092.

[36] L. A. Tuan, D. J. Shah, and R. Barzilay, “Capturing greater context for
question generation,” arXiv preprint arXiv:1910.10274, 2019.

[37] V. Liyanage and S. Ranathunga, “Multi-lingual mathematical word prob-
lem generation using long short term memory networks with enhanced
input features,” in Proceedings of The 12th Language Resources and
Evaluation Conference, 2020, pp. 4709–4716.

[38] C. R. Fletcher, “Understanding and solving arithmetic word problems: A
computer simulation,” Behavior Research Methods, Instruments, &amp;
Computers, vol. 17, no. 5, pp. 565–571, 1985.

[39] Y. Bakman, “Robust understanding of word problems with extraneous
information,” arXiv preprint math/0701393, 2007.



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 12

[40] D. Huang, S. Shi, C.-Y. Lin, and J. Yin, “Learning fine-grained expres-
sions to solve math word problems,” in EMNLP, 2017, pp. 805–814.

[41] S. Roy and D. Roth, “Mapping to declarative knowledge for word
problem solving,” Transactions of the Association for Computational
Linguistics, vol. 6, pp. 159–172, 2018.

[42] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program induction
by rationale generation: Learning to solve and explain algebraic word
problems,” in ACL, vol. 1, 2017, pp. 158–167.

[43] Q. Wu, Q. Zhang, J. Fu, and X.-J. Huang, “A knowledge-aware
sequence-to-tree network for math word problem solving,” in Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 7137–7146.

[44] J. Zhang, L. Wang, R. K.-W. Lee, Y. Bin, Y. Wang, J. Shao, and
E.-P. Lim, “Graph-to-tree learning for solving math word problems,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 3928–3937.

[45] S. Li, L. Wu, S. Feng, F. Xu, F. Xu, and S. Zhong, “Graph-to-
tree neural networks for learning structured input-output translation
with applications to semantic parsing and math word problem,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: Findings, 2020, pp. 2841–2852.

[46] T. Wang, X. Yuan, and A. Trischler, “A joint model for question
answering and question generation,” arXiv preprint arXiv:1706.01450,
2017.

[47] D. Tang, N. Duan, T. Qin, Z. Yan, and M. Zhou, “Question answering
and question generation as dual tasks,” arXiv preprint arXiv:1706.02027,
2017.

[48] X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Zhang,
S. Subramanian, and A. Trischler, “Machine comprehension by text-to-
text neural question generation,” in Proceedings of the 2nd Workshop
on Representation Learning for NLP, 2017, pp. 15–25.

[49] Y. Li, N. Duan, B. Zhou, X. Chu, W. Ouyang, X. Wang, and M. Zhou,
“Visual question generation as dual task of visual question answering,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6116–6124.

[50] Y. Deng, W. Lam, Y. Xie, D. Chen, Y. Li, M. Yang, and Y. Shen,
“Joint learning of answer selection and answer summary generation in
community question answering.” in AAAI, 2020, pp. 7651–7658.

[51] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao,
“Deep reinforcement learning for dialogue generation,” in Proceedings
of the 2016 Conference on Empirical Methods in Natural Language
Processing, 2016, pp. 1192–1202.

[52] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for ex-
tractive summarization with reinforcement learning,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), 2018, pp. 1747–1759.
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