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Co-attention Memory Network for Multimodal
Microblog’s Hashtag Recommendation
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Abstract—Hashtags are keywords describing a topic or a theme and are usually chosen by microblogging users. Hence, the hashtags
can be used to categorize microblog posts. With the fast development of the social network, the task of recommending suitable
hashtags has received considerable attention in recent years. Recently, most neural network methods have treated the task as a
multi-class classification problem. In fact, users are constantly introducing new hashtags in a highly dynamic way. Treating the task as a
multi-class classification problem with a fixed number of target categories does not allow the method to deal with the new hashtags. To
address this problem, the task is reinterpreted as a matching problem and a novel co-attention memory network is proposed to
represent the multimodal microblogs and hashtags. We utilize a co-attention mechanism to model the multimodal mircroblogs, and
utilize the post history to represent the hashtags. Experimental results on a Twitter-based dataset demonstrated that the proposed
method can achieve better performance than the current state-of-the-art methods that treat the task as a multi-class classification
problem.
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1 INTRODUCTION

W Ith the rapid development of the Internet, social
media has experienced rapid growth. Twitter-like

microblogging, is one of the most popular social media plat-
forms for information generation and diffusion. Moreover,
Twitter has 330 million active users per month according to
its quarterly report 1. Users can also interact with various
social media outlets. Hence, microblogs have been widely
used as sources for public opinion analysis [1], reputation
management [2], and many other applications [3], [4], [5],
[6]. According to Twitter, a specific form of metadata tag,
called a hashtag, can be used to mark keywords or topics
within the text of a microblog. A hashtag is a string of
characters prefixed with the symbol (#). Moreover, hashtags
have been used to perform various tasks, like microblog
retrieval [7], query expansion [8], and sentiment analysis
[9].

Even though the value of hashtags is proven by the
above works, relatively few microblogs include hashtags
labeled by their users. Therefore, the task of hashtag rec-
ommendation has received considerable attention in recent
years. Various methods have been proposed to perform
the research, including various supervised methods with
a manually constructed features [10], [11]. Moreover, the
collaborative filtering-based method [12] has also been used
to perform this task. Rather than considering both user
preferences and tweet content in recommending hashtags,
generative methods [13], [14] modeled the hashtag rec-
ommendation task as a translation process from content
to hashtags. With the rapid development of deep neural
networks, some deep neural network models [15], [16] also
have been proposed to make hashtag recommendations.

Particularly, most early methods only take textual infor-
mation into consideration. However, according to the statis-
tics, more than 42% of tweets include more than one type

1. https://investor.twitterinc.com/results.cfm

of information2. Hence, [16] proposed a novel deep neural
network to recommend hashtags for multimodal tweets by
using a co-attention mechanism, which proved that image
information was useful for hashtag recommendation. After
taking the visual information into consideration, [16] the
proposed model achieved better performance for recom-
mending hashtags. However, most of recent neural network
methods treated the hashtag recommendation tasks as a
multi-class classification problem. Hence, these methods can
only handle fixed amounts of hashtags, and they are not
flexible for emerging hashtags not seen by the model during
training.

To deal with this problem, we propose a novel model
that not only combines textual and visual information, but
also incorporates the post history. Since hashtags are usually
highly related to the tweet, measuring the similarities be-
tween the interests of the candidate hashtag and the tweet is
an important factor. As the memory network was proven to
be beneficial to recommendation task performance in social
media [17], [18], in this paper, a novel co-attention memory
network architecture is porposed to perform this task. The
proposed network architecture adopted the neural memory
network [19] to incorporate the content of a tweet with
corresponding images and post histories that contain the
candidate hashtag. It consists of two main components to
model the tweet and interests of a candidate hashtag, which
are incorporated into the external memory parts.

Moreover, the related entities are often only related to
a small part of the image or text. Be lenient for the irrel-
evant or unimportant parts of the image or text, it would
incorporate noise to make a prediction. Hence, using a
global vector to present the image or text may not be a
good choice. Motivated by the work on image question

2. https://thenextweb.com/socialmedia/2015/11/03/what-
analyzing-1-million-tweets-taught-us/
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answering [20], [21] and image captioning [22], we introduce
an attention mechanism to improve hashtag recommenda-
tions. The model is allowed to focus on specific parts of the
input with the help of the attention mechanism. With the
help of the co-attention mechanism, our model can extract
important parts of the visual and textual information of
the tweet, which are necessary to construct the complete
meaning of the multimodal tweet. More specifically, the
proposed network is an end-to-end neural memory network
combined with a co-attention mechanism. This model can
simultaneously take into consideration both the content of a
tweet with corresponding images, and post history interests
of candidate hashtag. Particularly, the model can tackle
new hashtags, and does not need to re-build the model
when new hashtags are added into the corpora. Finally,
predictions are calculated based on the similarity features
extracted from the multimodal information of tweets and
the post histories that contain the candidate hashtag.

To demonstrate the effectiveness of our model, we per-
formed experiments on a large data set collected from
Twitter. The experimental results showed that the proposed
method could achieve better performance than state-of-the-
art methods, and also tackle new hashtags which are added
into the corpora. The main contributions of our work can be
summarized as follows.

• We introduce a novel matching-based framework
for hashtag recommendation tasks. The problem of
new hashtags that are added into the corpora can be
addressed.

• We propose a novel network architecture combined
with the attention mechanism to incorporate the
content of a multimodal tweet and interest of the
candidate hashtag.

• Experimental results demonstrate that the proposed
method can achieve significantly better performance
than current state-of-the-art methods.

2 RELATED WORK

2.1 Hashtag Recommendation

Because of the increasing requirements, various studies
recently have been performed for different recommendation
tasks on social media, such as content recommendation [23],
[24], [25], community recommendation [26], [27], [28], [29],
music recommendation [30], [31], [32], news recommenda-
tion [33], [34], topic recommendation [18], [35], [36], mention
recommendation [17], [37], [38] and hashtag recommenda-
tion [14], [16], [39], [40].

For the hashtag recommendation task, various methods
have been proposed in the past few years. [41], [42] pro-
posed similarity-based methods. [41] tried to extract hash-
tags from similar tweets as candidate hashtags, then selected
hashtags from these candidates by using heuristics ranking
methods. [42] made use of not only similar tweets, but
also similar users to choose candidate hashtags. [13], [14],
[43], [44] recommended hashtags by using topic modeling.
[13] elicited latent topics with Latent Dirichlet Allocation
(LDA) to recommend tags of resources in order to improve
the search. [43] used LDA to model the topic distribution,
using this distribution to recommend general hashtags. [14]

assumed that the tweet and hashtag are talking about the
same theme but in different languages, so they proposed
a topic-translation model to extract the specific topic. To ex-
plore the possibility of predicting hashtags for un-annotated
status updates, [39] proposed a graph-based prediction
framework. [44] treated hashtags as labels of topics and pro-
posed a model named TOMOHA to discover the relation-
ship between words, hashtags, and tweet topics. They also
combined the user following relationship into the model.
[45] modeled hashtag relevance by using their proposed
learning-to-rank method, which could extract time-aware
features from highly dynamic content. [15] incorporated the
trigger words into the model by using convolutional neural
networks (CNNs). [46] tried to learn users’ perceptions of
topics to recommend hashtags, using topic-term relation-
ships that were extracted by discriminative term weights.

Most of these methods only used textual information,
despite the fact that Twitter allows users to post various
kinds of messages such as images, videos, hyperlinks and
so on. Some other works have shown that it is useful to
combine different types of information into the model. [47]
proposed a topical model to integrate the temporal and
personal information into consideration. [48] integrated hy-
perlinked information with textual information and found
it also useful for hashtag recommendation. [49] proposed
a hierarchical attention network architecture to combine
the textual information and the corresponding user history.
[16] found that images posted by users in the tweets can
provide valuable information for hashtag selection. Hence,
they proposed a co-attention network to incorporate images
and textual information of multimodal tweets.

Based on the descriptions above, we can arrive at the
conclusion that making use of various valuable informa-
tion can significantly improve the performance of hashtag
recommendation. Inspired by this, in this work, textual
information, visual information of multimodal tweets and
the posting histories of hashtag are incorporated into our
model to convert the hashtag recommendation task into a
matching-based problem.

2.2 Multimodal Tasks

Multimodal tasks have attracted a lot of attention with the
information getting more diverse, and have been studied
in various aspects. Futhermore, different tasks take various
view of the visual information. For example, the image
caption task is focus on generating a textual description
of images and visual questions answering is answering the
question according to a given image. [22] used long short-
term memory networks (LSTM) to make use of high-level
image features to generate captions. [50] proposed a scheme
to detect the copy-move forgery in an image by extracting
the key points for comparison. In their method, the scheme
first segments the test image into semantically independent
patches prior to keypoint extraction. [51] represented the
image regions by CNNs, and represented the sentences
by bidirectional Recurrent Neural Networks (BRNNs), then
combined the two representations to generate descriptions
of image regions. The major related work of multimodal
tasks, the visual question answering task, has been studied
by various methods as well. Based on CNNs and RNNs,



3

most early works tried to turn the image caption task [22],
[52] into a visual question answering task [53], [54]. Recent
works [55], [56], [57] showed that the attention mechanism
can be significantly useful for aligning text and image infor-
mation.

As mentioned above, the attention mechanism has been
proved successful in various multimodal tasks. In this work,
the hashtag recommendation is treated as a multimodal task
and integrate visual information into our model. Further-
more, we make use of users’ multimodal post histories to
do a cross attention examination with features extracted by
the co-attention mechanism.

2.3 Matching Problem
In natural language processing, the matching problem is
an important task and has been explored with various
methods. [58] surveyed recent advances in solving matching
problems.

With the development of deep neural networks, the
matching problem has been studied with deep neural net-
works and has achieved remarkable results. [59] developed
a series of latent semantic models with a deep structure
that projects queries and documents into a common low-
dimensional space, then computes the relevance between
the document and the given query with respect to their
distance. To model the complicated relationships between
two objects from heterogeneous domains, [60] proposed a
model to combine the localness and hierarchy intrinsic for
short text matching. [61] approached short text matching
with a method named Deep Match Tree to make use of the
texts’ syntax information. It first discovers patterns to match
two short portions of text, which is defined in the product
space of dependency trees, then it matches the patterns by
using deep neural networks. [62] used CNNs to rerank pairs
of short texts, which can learn the optimal representation
of text pairs and a similarity function to relate them in
a supervised way from the available training data. For
sentence matching, [63] proposed novel deep convolutional
network architectures to represent the hierarchical struc-
tures of sentences and capture the rich matching patterns
at different levels. [64] addressed sentence embedding by
using LSTM.

Most of recent works have treated hashtag recommenda-
tion tasks as a multi-class classification problem, which can
only handle fixed numbers of hashtags. However, because
of the development of hashtags and new trends in using
them, multi-class classification is not suitable for hashtag
recommendation anymore. In this study, we addressed
the hashtag recommendation task as a matching problem,
which can be used to handle the new hashtag issue.

2.4 Attention mechanism and Memory
The attention mechanism in neural networks is based on
the visual attention mechanism found in humans. Human
visual attention suggests that our brains usually focus on
selective parts of the whole perception regions according to
demand. So the attention mechanism provides the possibil-
ity to avoid noise in the input, focusing on the useful parts
that can contribute to improving the model performance,
and proved to be powerful in various tasks, such as machine
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Fig. 1. Matching score for generating candidate hashtag set. Here, the
representation of each tweet is formulated by summing the pre-trained
word vectors of all words in each tweet. Then we generate a dot result
between these representation vectors. Finally, a multi-layer perceptron
is applied to the dot result to formulate matching score.

translation [65], speech recognition [66], action recognition
[67], image classification [68], image caption generation [69]
and so on. The attention mechanism gives the model the
ability to select the most pertinent piece of information,
rather than using all available information.

Recent works have showed that models can achieve
significant improvements by using memory networks [70]
in various NLP tasks, for example language modeling [19],
reading comprehension [71], question answering [19], [72],
[73], dialog systems [74], [75], etc.

In this work, we combine the attention mechanism with
memory networks to do hashtag recommendation on mul-
timodal tweets. We first get tweet content-based new visual
representations and visual-based new tweet representations
using the co-attention mechanism. Then we combine the
two representations with a cross attention memory network
to extract the important information from users’ multimodal
post histories as the users’ interests. Our model can achieve
remarkable recommendation results because the significant
parts have been extracted.

3 APPROACH

In this work, we reinterpret the hashtag automatic recom-
mendation task as a matching problem. More specifically,
our model can choose whether a hashtag h ∈ H should be
recommended for the query multimodal tweet t. Moreover,
the query multimodal tweet t contains both a textual part
tx and corresponding image ti. In addition, the list of
candidate hashtags H for each query tweet t is composed of
the top L hashtags based on the matching score between the
tweet and the post history of each hashtag. The model for
generating the candidate hashtag set is illustrated in Figure
1.
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Fig. 2. This is a example of one-layer CoA-MN, which consists of two components: (1) Query Tweet Modelling, (2) Hashtag History Interests
Modelling. Here, we denote ũ0 as the representation of query tweet and ṽ0 as the representation of corresponding image, and use ũ0, ṽ0 query
over the candidate hashtag’s tweet histories and image histories, respectively. qk is the final representation of the overall architecture which modeling
the interests similarity among query tweet and a candidate hashtag.

Then, we introduce a novel co-attention memory net-
work framework to perform the hashtag recommendation
task, as illustrated in Figure 2. The “Query Tweet Mod-
elling” utilize the co-attention mechanism to construct the
multimodal representation of query tweet (ũ0 denotes the
representation of query tweet and ṽ0 denotes the representa-
tion of corresponding image). Further, the “Hashtag History
Interests Modelling” are performed by stacked hierarchical
memory networks.

The inputs of our model are the query tweet t and the
candidate hashtag’s posting history. The posting histories
that contain the same hashtag can represent the attributes
and interests of the hashtag. Hence, we utilize the tweet
posting histories to model the tweet history interests of the
hashtag, and the corresponding image histories to model
the image history interests of the hashtag. Firstly, we utilize
the pre-trained VGG-Net 16 to formulate the representation
of images in our model, including the images of the query
tweet and hashtag’s posting histories. Meanwhile, we use a
tweet encoder to represent the tweet. Secondly, we construct
the representation of the query tweet by using a co-attention
neural network and then encode the history interests of
the candidate hashtag with the help of the representation
of the query tweet. Specifically, a hierarchical attention
mechanism is applied to help the encoder formulate a high-
quality history interests representation. Moreover, to con-
struct the final representation, we repeat the history interests
updating procedure for k steps. The steps are denoted as
k = {0, 1, 2, · · · ,K}. Finally, we use a fully connected
softmax layer to make matching prediction. To be clear, we
list the explanation of the key notations in Table 1.

3.1 Feature Extraction

Image representation

TABLE 1
Meaning of formal notation

N The memory capacity
T The maximum tweet length
M The number of image grids
ei The i-th image
tj The j-th tweet
ṽh The candidate hashtag’s image history representation
ũh The candidate hashtag’s tweet history representation

Ṽ k−1
M The matrix formulated by M columns of ṽk−1

aki,M The attention probability of each region in i-th image
qk The global representation after k-layer hashtag history

modelling memory network

We use a pretrained 16-layer VGGNet [76] to formu-
late the representation of an image. Firstly, images are
rescaled into 224 × 224. Different from previous methods
that construct a global vector as the image representation,
we construct spatial features of different divisions that
contain more specific information about the original image.
We divide an image into N × N parts, and use VGGNet
to construct a 512-dimension feature vector for each part.
Hence, we can use vI = {vi|vi ∈ RD, i = 1, 2, · · · ,m} to
represent an image, wherem = 7×7 is the number of image
grids, and vi is a 512-dimensional feature vector for grid i.
For computational aspects, we use a single layer perceptron
to convert each image vector into a new vector that has the
same dimensions as the tweet feature vector.
Text representation

Originally, each word wi of a query tweet t is formulated
as a one-hot vector. Then, we embed each one-hot vector
into a word vector xi by utilizing a embedding layer. Hence,
we can have a word-level tweet feature representation :
t = {x1, x2, · · · , xT }, where T is the max length of the
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tweet. Moreover, we pad zero vectors into those sentences of
length less than T . Particularly, the word embedding matrix
is trained end-to-end over the whole model.

The Long Short-Term Memory network (LSTM) is a kind
of RNN designed to solve the issue of learning long-term
dependencies, and it has been proved to be able to achieve
a good performance in understanding text. However, since
RNNs process sequences in time series, they tend to ignore
future context information. A bidirectional RNN, which
feeds each training sequence forward and backward, respec-
tively, was proposed to address that problem. This structure
provides a complete past and future context information set
for each point in the input sequence of the output layer.
Hence, we utilize the bidirectional LSTM to construct a
sentence-level tweet features representation. At each time
step, the bidirectional LSTM unit takes the word embedding
vector xt as an input vector and outputs a hidden state ht.
As shown in the following:

ht
(f) = LSTM (f)(xt, ht−1

(f)), (1)

ht
(b) = LSTM (b)(xt, ht+1

(b)), (2)

where ht
(f) and ht

(b) represent the hidden states at time
step t from the forward and backward LSTMs, respectively.
Finally, we construct a set of text representation vectors
uT = {u1, u2, · · · , un} by summing these two hidden state
vectors at each time step 3:

ut = ht
(f) + ht

(b), (3)

where ut is the feature vector of the t-th word in the context
of the entire sentence.

3.2 Co-attention based Tweet Modelling
After the process denoted in Sec 3.1, we formulate the
image representation matrix vI and the tweet representation
matrix vT . It is clearly that texts and images contain different
levels of abstraction for a tweet. Therefore, we introduce
a co-attention network to construct high-level representa-
tion of the query tweet. Because the textual data is more
meaningful in formulating an abstraction of the query tweet,
we utilize text-based attention and image-based attention
sequentially.
Text-based visual attention

Usually, a hashtag is only related to few grids of the
corresponding image. And, only a few parts of the image
represent the entity in the image. In other words, many
grids of the image are noises according to the hashtag.
Hence, instead of using a global vector to represent the
image, we divide the image into 49 parts and construct the
representation of each division to obtain a feature matrix
vI . Then, a text-based attention mechanism is incorporated
to filter out noises and locate grids that are relevant to the
corresponding hashtag.

Above all, we use an average pooling layer to summarize
the sentence-level representation of a tweet to a vector: u.
Next, we incorporate an image attention with the help of

3. We have tried the two methods to construct the text representation,
as concatenation and summing two hidden state vectors at each time
step, and the summing method is performing better than the concate-
nation method.

the sentence-level representation. The operation of the text-
based attention is computed by using a 2-layer feed-forward
neural network (FNN) and the softmax function:

hM = tanh(WvM vM )� tanh(WvUU), (4)
aM = softmax(WhhM ), (5)

where U ∈ Rd×M is a matrix formulated by M columns of
u and vM ∈ Rd×M , d is the dimension of the representation,
and M is the number of divided grids of each image.
aM ∈ RM , which corresponds to the attention probability
of each grid, is anm-dimensional vector. We use� to denote
element-wise multiplication of the image matrix and mean-
pooling tweet matrix.

As the attention probability am of each image grid m
is calculated in the above process, we use the weighted
sum of the image grid vectors to construct the high-level
representation of the image.

ṽI =
∑
m

amvm (6)

Image-based textual attention
With the help of text-based visual attention, a new image

feature representation ṽI which is related to each word
in the given tweet. Similar to text-based visual attention,
image-based textual attention is incorporated to help the
model focus on more important words when constructing
the sentence-level meaning of a tweet. Specifically, we used
the new image representation vector ṽI to query the original
textual feature uT , formulating a new text representation ũT
based on the textual attention probability distributions. The
detail is as follows:

zT = tanh(WuT
uT )� tanh(WuV

ṼI), (7)
aT = softmax(WzzT ), (8)

where ṼI ∈ Rd×T is a matrix formulated by T columns
of ṽI , uT ∈ Rd×T and T is the max length of tweets. And “�”
denotes element-wise multiplication of the word feature
matrix and new image feature matrix.

After the attention probability for each word is calcu-
lated, the new representation of the tweet is formulated by
the weighted sum of each word vector:

ũT =
∑
t

atut (9)

3.3 Hashtag History Modelling

It is clear that the hashtag history stored in the mem-
ory has a hierarchical structure. Firstly, each tweet doc-
ument has many tweets: DT = {t1, t2, · · · , tN} and a
tweet-level structure. Each tweet also has many words:
t = {w1, w2, · · · , wT }, and each image document has many
corresponding images:DI = {e1, e2, · · · , eN}. Each image
has been divided into grids: e = {v1, v2, · · · , vM} and a
grid-level structure. In view of the fact that not all parts of
the history are equally important, we utilize a hierarchical
attention mechanism to model the hashtag history. Particu-
larly, we can stack up the history modelling layer to achieve
better performance.
Grid-level modelling
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In the input image setDI = {e1, e2, · · · , eN}, each grid’s
vector ri,j ∈ ei is extracted by a 16-layer VGGNet and saved
as a visual memory vector. And ri,j is a 512 dimension
vector. To simplify the calculating process, we utilize a fully
connected layer vi,j = Wri,j to convert each grid’s original
vector ri,j to the same dimension as the tweet feature vector.

Because not all grids in an image are equally important
to model the image history interests, at the k-th hop of the
history modelling network, we utilize the image represen-
tation vector ṽk−1 of the last hop to query the grid vectors,
constructing a new representation of each history image.
The detail is illustrated as follows:

hki,M = tanh(W k
Mvi,M )� tanh(W k

ṽ Ṽ
k−1
M ), (10)

aki,M = softmax(W k
hh

k
i,M ), (11)

v∗i =
M∑
j

aki,jvi,j , (12)

where Ṽ k−1
M ∈ Rd×M is a matrix formulated by M columns

of ṽk−1 and M is the grid number of each image. aki,M ∈
RM , which corresponds to the attention probability of each
region in i-th image.

Then, each image is converted into a fixed-size vector
v∗i ∈ Rd, which represents the interest embedding of the
i-th image.
Image-level modelling

As we formulate a new representation v∗i for each history
image based on a grid-level attention mechanism, there is
no doubt that each image is unequally relevant to model
a hashtag’s image history interests. To model the whole
image history interests of a hashtag, we query the new
representation of each history image with the help of the
last step of the image history interests vector ṽk−1:

hkN = tanh(W k
Nv
∗
N )� tanh(W k

ṽN Ṽ
k−1
N ), (13)

akN = softmax(W k
hN
hkN ), (14)

ṽh =
N∑
i

aki v
∗
i , (15)

where Ṽ k−1
N ∈ Rd×N is a matrix formulated by N columns

of ṽk−1 and N is the image capacity of the image history
memory, ṽh is the representation of the candidate hashtag’s
image history. And akN ∈ RN , which corresponds to the
attention probability of each image in an image history
memory.

Through the above procedure, we formulate the repre-
sentation ṽ ∈ Rd for a candidate hashtag’s whole image
history interests and d is the dimension of the vector.
Word-level modelling

Similar to the image history, the tweet part history also
has a two-level architecture. Above all, in the text history
set t1, t2, ..., tN , each word wi,j of the corresponding tweet
ti is embedded into an d-dimension textual memory vector
ci,j by utilizing an embedding matrix A (the shape of A
is d × |V |), as ci,j = Awi,j . The memory ci,j in this step
is similar to the image memory vx,y , which is also named
input memory. And we can project the input words of
historical tweets into the same space by applying the textual
memory.

In order to filter out irrelevant words, at the k-th hashtag
history interests modelling layer, we formulate attention
probabilities over a hashtag’s word memory vector set with
the help of utilizing the last hop of the textual representation
ũk−1.The match between input memory vector ci,j and ũk−1

is computed by incorporating the inner product followed by
a softmax layer:

zki,T = (ũk−1)trci,T , (16)

pki,T = softmax(W k
z z

k
i,T ), (17)

where (ũk−1)tr is the transpose of last step of the tweet
representation vector ũk−1 and T is the maximum length of
each tweet. And pki,T ∈ RT denotes the attention probability
of each word in i-th tweet.

Unlike the grid-level encoder, we apply a new embed-
ding matrix B to project the word wi,j into another memory
vector ui,j (as same as d-dimension and named output
memory), as ui,j = Bwi,j . Then, the tweet-level represen-
tation is generated by summing all output memory vectors
weighted by the attention probability denoted above:

u∗i =
T∑
j

pki,jui,j , (18)

Following the above steps, we convert each tweet in
the tweet history into a fixed-length vector that denotes the
representation of the tweet.
Tweet-level modelling

In order to formulate the tweet-level history interests of
a candidate hashtag, we introduce a tweet-level encoder to
select important parts of the tweet history memory. Given
the encoded set of tweets s = {u∗1, u∗2, · · · , u∗N}, the history
interest representation of the candidate hashtag’s textual
history is constructed by a weighted sum of the new tweet
representations denoted above. The weights of each tweet
are described as the important level of the corresponding
tweet in the tweet history. The equation of this procedure is
as follows:

zkN = tanh(W k
Nu
∗
N )� tanh(W k

ũN
Ũk−1
N ), (19)

pkN = softmax(W k
zN z

k
N ), (20)

ũh =
N∑
i

pki u
∗
i , (21)

where Ũk−1
N ∈ Rd×N is a matrix formulated by N columns

of ũk−1,N is the tweet capacity of the tweet history memory,
and ũh is a representation of the candidate hashtag’s tweet
history. And pkN ∈ RN denotes the attention probability of
each tweet in a tweet history memory.
Stacked history modelling network

In order to model more complex history interests and
calculating the similarity between the query tweet and
a candidate hashtag, we try to repeat the tweet history
modelling network iteratively by using the last generated
representations. Moreover, the stacked procedure can be
summarized as follows: for the k-th (where k is greater than
or equal to 1) tweet history modelling layer, we formulate
the image history interests and the tweet history interests
representation of the candidate hashtag based on the query
tweet, respectively. The new query vector is formed by
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adding the new feature vector to the previous vector. The
detail is as follows:

ũk = ũk−1 + ũkh, (22)

ṽk = ṽk−1 + ṽkh, (23)

where ũ0 is initialized by tweet presentation ũT of the query
tweet, and ṽ0 is initialized by image presentation ṽI of the
query tweet.

Further, the k-th global representation vector, which is
used to model the history interests similarity between the
candidate hashtag and the query tweet, is updated after
the k-th image history interests and tweet history interests
representation of the candidate hashtag:

qkh = ũkh � tanh(Whṽ
k
h), (24)

qk = qk−1 + qkh, (25)

where qkh is the whole interests representation (named final
representation) of the candidate hashtag’s tweet histories
and the corresponding image histories at k-th hashtag his-
tory modelling memory layer. � is element-wise multiplica-
tion. Particularly, considering the inequalities of information
density of word vectors and picture grid vectors, we apply
an additional layer Wh to make the image history represen-
tation have similar information densities with tweet history
representation.

3.4 Final Prediction

Based on the representation generated using the above
steps, we incorporate a single-layer softmax classifier to
determine whether or not a candidate hashtag h should be
recommended for the query tweet t. The feature vector is
passed into the fully connected layer:

f = σ(Wqq
k + bq), (26)

where Wq is the weight parameter of the fully connected
hidden layer, bq is the bias parameter of the hidden layer, qk

is the final representation obtained after the k times hashtag
history modelling layer and σ is a non-linear activation
function.

The final prediction is generated by a softmax layer:

p(y = i|f ; θs) =
exp(θisf)∑
j exp(θ

j
sf)

, (27)

where θis is a weight vector of the i-th class and j ∈ {0, 1}.
According to the scores output from the softmax layer,

we can select the top-ranked recommended hashtags for the
query tweet.

3.5 Training

In our work, the training objective function is formulated as
follows:

J =
∑

(tq,a,c,i)∈D

−logp(i|tq, a, c; θ), (28)

where D is the training data set, i ∈ {0, 1} is the label
of the double tuple (tq, h). When i = 1, the candidate
hashtag h should be recommended to the query tweet tq ,
and i = 0 represents the candidate hashtag h that should

not be recommended. θ is the whole parameter set of our
model.

To minimize the objective function, we use a stochastic
gradient descent (SGD) with the Adam [77] update rule,
and the learning rate α = 0.001, β = (0.9, 0.99). The
batch size is 256. The model is implemented in Keras, and
all parameters are initialized by Keras in default methods.
Then, we utilize the dropout and add l2-norm terms for the
regularization (the parameter of the dropout is 0.2 in our
training procedure).

4 EXPERIMENT

In this section, we first describe the data set collected from
Twitter. Then, we introduce the experiment setting and
baseline methods. Finally, analyses are given according to
the performance of our experiments.

4.1 Dataset and Setup

We started by using Twitter’s API4 to collect public tweets
from randomly selected users. We randomly selected 1.2
million users and crawled their post histories, including
252.6 million tweets. Then, we selected those tweets that
contained both images and hashtags from the above col-
lection. Among them, 2.05 million tweets were chosen.
Moreover, we filtered out the hashtags whose frequencies
were very low in our data set, and the unique number
of hashtags preserved in the corpus was 3,280. Next, we
randomly picked out 8 tweets for each preserved hashtag as
the history set of the hashtags. Then the history set contains
26,240 tweets and 26,240 corresponding images. Finally, the
collection we constructed contained 334,019 tweets with
corresponding images. The average number of hashtags per
tweet was 1.15 in the corpus. The detailed statistics are
shown in Table 3. We split the dataset into a training set
and a test set, with a ratio of 8:2, and randomly selected
20% of the training set as the valid set.

For text words, we filtered out the stop words and
low-frequency words in our work. The constructed word
vocabulary contained 259,410 distinct words. For images,
we downloaded images from the retrieved urls and rescaled
them to 224×224. Then we fed them into a pre-trained VGG-
16 network. The outputs of the last pooling layer of VGGnet
were extracted as the image features. For the memory por-
tion, the capacity of the memory was restricted to 5 tweets
with corresponding images, and the maximum length of
each tweet was 34. In other words, we randomly extracted
5 tweets from each hashtag history set that contained 8
tweets, and used these 5 tweets to present the hashtag’s
history interests and stored them in the supporting memory.
The size of candidate hashtag set was 10 (we also took
experiments on a candidate hashtag set of 30 or 50, and
our model achieved better performance on the candidate
hashtag set with a size of 10). The embedding dimension
in the experiment was 300 (we also transferred the image
feature dimension from 512 to 300), and the depth of hashtag
history modeling memory layer was set to 5. The learning
rate was set to 0.01, and the dropout rate was set to 0.2.

4. https://developer.twitter.com/
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TABLE 2
Comparison performance of different methods on the testing dataset.

Method Precision Recall F1-Score Hits@3 Hits@5
NB 0.078 0.067 0.072 0.123 0.147
SVM 0.187 0.189 0.188 0.303 0.366
KNN 0.150 0.121 0.134 0.283 0.342
LSTM+CNN 0.201 0.197 0.199 0.321 0.383
LSTM+CNN+H 0.411 0.401 0.405 0.520 0.637
TTM [14] 0.185 0.184 0.184 0.300 0.361
TOMOHA [44] 0.177 0.186 0.181 0.304 0.363
CNN-Attention [15] 0.217 0.216 0.216 0.310 0.368
Co-Attention [16] 0.288 0.271 0.279 0.366 0.400
CoA-MN 0.533 0.518 0.525 0.654 0.730

TABLE 3
Statistics of the evaluation dataset. Avg Hashtag/Tweet represents the

average number of manually labelled hashtags per tweet.

#Tweets 334,019
#Images 334,019

#Hashtags 3,280
#Avg Hashtag/Tweet 1.15

In our work, we used three metrics to evaluate the
performance of our model, which are the precision (P),
recall (R), and the F1-score (F1). The number of recom-
mended hashtags for each tweet is denoted as L, where
L = {1, 2, 3, 4, 5}, the precision, recall, and F1-score at
the L result are denoted as PL, RL, and F1L, respectively.
Moreover, we incorporated Hits@3 and Hits@5 to represent
the percentage of correct results recommended from the top
n results.

4.2 Baseline

To analyze the effectiveness of our model, we evaluated
some effective methods including the state-of-the-art meth-
ods as baselines on the constructed corpus, described as
follows:

• NB: To perform the hashtag automatically rec-
ommending task, we converted the problem into
a multi-classification problem. We applied Naive
Bayes to model the posterior probability of each
hashtag by only using the textual information of the
tweets.

• SVM: We utilized the pre-trained word vector5

and summed them as the feature vector of the
tweet. These pre-trained 100-dimensional word vec-
tors were trained on aggregated global word-word
co-occurrence statistics from a Twitter corpus. The
corpus contain 1.2 million words and it using the
Glove architectures for computing vector represen-
tations of words. Then, we used these tweet feature
vectors to implement the support vector machine for
the recommendation.

5. https://nlp.stanford.edu/projects/glove/

• KNN: We also utilized the pre-trained 100-
dimensional Glove Twitter word vector and aver-
aged them as the feature vector of the tweet, then
used the cosine similarity distance between tweet
feature vectors to assign the hashtag label that was
the most common among its k nearest neighbors. We
recorded the best results when the K was equal to 15.

• LSTM+CNN:LSTM+CNN also treated the hash-
tag automatically recommending task as a multi-
classification problem. We also combined the textual
feature processed by LSTM with visual feature pro-
cessed by CNN to model and make a prediction.

• LSTM+CNN+H:To assess the usefulness of the hash-
tag posting history, the query tweet and hashtag
posting history were given to LSTM and CNN to
make a decision on whether or not a candidate
hashtag should be recommended. Specifically, the
difference between this method and the proposed
model, is that the LSTM+CNN+H just simply adds
the image feature vector and the text feature vector
of the query tweet without any attention mechanism.

• TTM: TTM was proposed by [14] for hashtag recom-
mendation. The authors proposed a topical transla-
tion model to recommend hashtags, which only used
the textual information.

• TOMOHA: TOMOHA was proposed by [44] for
hashtag recommendation and was a supervised topic
model-based solution. The authors treated hashtags
as labels for topics, and they developed a supervised
topic model to discover relationship among words,
hashtags and tweet topics.

• CNN-Attention:CNN-Attention was proposed by
[15] and was a CNN architecture that used the at-
tention mechanism to incorporate trigger words.

• Co-Attention: Co-Attention network was proposed
by [16], and the paper incorporated textual and vi-
sual information to recommend hashtags for multi-
modal tweets. This was the state-of-the-art approach
used for the hashtag recommendation task.

4.3 Result and Discussion

The performance of different methods on our dataset is
listed in Table 2. The first three metric results (Precision,
Recall and F1-score) listed in Table 2 were obtained when we
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Fig. 3. Precision, Recall and F1-score with different amount of recommended users

recommended the top one hashtag for each query tweet. The
last two metric results (Hits@3 and Hits@5) represented how
many hits items are found within the top-n recommended
items (n = 3 and n = 5, respectively). We can find that our
proposed model (CoA-MN) achieves a better performance
than other comparison methods of all metrics.

Above all, compared with Co-Attention, which was the
state-of-the-art method for the automatic hashtag recom-
mendations, our proposed model (CoA-MN) shows a 24.5%
absolute improvement in terms of Precision, a 24.7% ab-
solute improvement in Recall and a 24.6% absolute im-
provement in F1-score. Particularly, the Hits@3 and Hits@5
results of our proposed results of our model are greater
than 0.654 and 0.730, respectively. Therefore, we can find
that 65.4% of correct hashtags can be found in the top 3 of
the recommendation list and 73.0% of the hashtags can be
recommended in the top 5.

Observing the comparisons of the “LSTM+CNN” and
the “LSTM+CNN+H”, it illustrates that the hashtag’s post-
ing tweet histories and corresponding images are key fea-
tures to improving the performance of hashtag recommen-
dations. From the results table, we can observe that nor-
mally combining the textual feature with visual features
cannot make a perfect hashtag prediction. After incorporat-
ing the posting histories of hashtags, we can clearly find that
“LSTM+CNN+H” achieves a 21.0% absolute improvement
in terms of Precision, a 20.4% absolute improvement in
Recall and a 20.6% absolute improvement in F1-score than
“LSTM+CNN”. Moreover, the Hits@3 and Hits@5 results
of our proposed results from “LSTM+CNN+H” are greater
than all other methods except our model. In other words,
it is the strongest confirmation that much important in-
formation in the hashtag posting history can be used to
recommend hashtags in social media.

From Table 2, we can observe that our proposed model
(CoA-MN) consistently achieves a better performance in
all evaluation results than “LSTM+CNN+H”. Along with
our proposed model (CoA-MN) achieves 12.2% absolute
improvement in terms of Precision, 11.7% absolute improve-
ment in Recall and 12.0% absolute improvement in F1-
score than “LSTM+CNN+H”. It is therefore proved that our
model can extract more useful information from both textual
features and visual features with the help of the co-attention
mechanism. Hence, by incorporating a hashtag’ tweet post-
ing history and corresponding images and utilizing the co-

attention mechanism to combine these two features, our
proposed model achieved great performance on the hashtag
recommendation task.

Figure 3 shows the Precision, Recall and F1-score of
the models with different numbers of recommended hash-
tags. Each point of the curve represents the number of
hashtags recommended ranging from 1 to 5. To emphasize
our experimental results, we used the red line combined
with a square label to draw Figure 3. It is shown that
Precision decreases and Recall increases as the number of
recommended hashtags increases. Particularly, our model
achieves extremely better performance than other methods
in all metrics. The curve that is higher on the graph indicates
the better performance. From Figure 3, we can see that the
performance of our proposed model is the highest of all
the methods in all conditions as the number of hashtags
recommended ranges from 1 to 5. Definitely, Figure 3 not
only denotes that our proposed method was significantly
better than the state-of-the-art methods, but it also proves
that our model is beneficial for hashtag recommendation
that incorporates the posting histories of hashtags.

4.4 Parameter Influence

There are several critical hyper-parameters influencing the
performance of our proposed model. To evaluate the in-
fluence of the parameters used in our model, we varied
one parameter and fixed the others in turn. The effects
of the hashtag candidate set size are shown, the results
of different depth of hashtag history modeling memory
network are compared, the performance with different em-
bedding dimensions and the existence of a dropout layer
were investigated. Based on the experimental results, we
can observe that the proposed model could achieve stable
performance, in the condition of various parameter settings.

First of all, we evaluated the influence of the hashtag
candidate set size and performed experiments on candidate
sets of size 10, 30 and 50. In Figure 4, we show the histogram
of the three metrics (Precision, Recall and F-score) with
different candidates sets. It is clear that when the size of
the hashtag candidate set is smaller, the better performance
of these three metric is achieved. We also obtained the best
performance on the candidate set with the size of 10, which
indicated that the first step of generating candidate sets have
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a great effect. Hence, future work can also go on how to
generate smaller but higher quality candidate sets.
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memory network

The second parameter we evaluated is the depth of the
hashtag history modelling memory layer, which we varied
from 1 to 5 in this experiment. In Figure 5, we draw the
Precision, Recall and F-score curves to show the depth’s
influence on the performance. Along with the increase in
the depth of the hashtag history modelling memory layer,
the results are better. We also obtained the best performance
with the 3-layer hashtag history modelling and the per-
formance with more than 3-layer was slightly lower than
the best one, which indicates the robustness of our model
along with the deeper depth. Since increasing the number
of layers of the network will make the model more complex
with more parameters without a significant improvement
in the results, hence, the performance of the 4-layer and
5-layer were slightly lower than the 3-layer. The figure
demonstrates that the multi-depth of the hashtag history
modelling memory network works better than a single-level
one.

Figure 6 shows the contributions of the embedding di-
mension to the performance. To evaluate how it influenced
the performance, we fixed the depth of the hashtag history
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Fig. 6. Influence of Embedding size

modelling memory layer to 3, the size of a candidate set to
10 and tried different embedding dimensions. The compar-
ison results shown in Figure 5 demonstrate that the models
with a high embedding dimensions performed better than
those with a low dimension. The results improved when the
dimension was increased from 50 to 300, and the results
from 300 to 500 embedding dimension were fluctuating
around the result of 300 dimensions. In a word, the size
of the embedding dimension represents the expression abil-
ity for vocabulary and images, and a higher dimension
can enhance both the textual feature and visual feature
expression ability. To recommend an appropriate hashtag
using a more complex model, it is considerate to choose a
high embedding dimension. But the Figure 6 shows that, in
our work, if we want to give an effective suggestions and
simply the complexity of the model in the meantime, the
300 embedding dimension would be a better choice.

Finally, we also compared the performance of our model
with and without dropout layers, and the results are shown
in Table 4. The depth of the hashtag history modelling layer
was 3 and the embedding dimensions were 300. There is no
doubt that the model achieved better performance with the
help of a dropout layer. Compared to the model without
a dropout layer, the one with a dropout layer achieves
an improvement of 1.5% in Precision, along with a 1.4%
increase in Recall and 1.4% increase in F1-score. In other
words, even without a dropout layer, our model achieved
greater than 23% improvements in each category, compared
with the state-of-art method.

TABLE 4
The performance with and without dropout on our datasets

With Dropout Precision Recall F1-score
No 0.518 0.504 0.511
Yes 0.533 0.518 0.525 ·

5 CONCLUSION

In this work, we proposed a CoA-MN to combine textual
and visual information of hashtag’s posting history by
applying a hierarchical attention mechanism on external
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memory. In view of the explosive growth in social media
use and the diversity of information, we incorporate the
textual information and visual information to perform the
hashtag recommendation task. Since tweets and images are
not equally important in modelling query tweet representa-
tion, we utilize the co-attention mechanism, which generates
textual attention and visual attention sequentially. The most
important aspect is that we converted the hashtag recom-
mendation task to a matching-based task by incorporating
the posting histories of hashtags. This allows us to address
the problem that previous methods can only handle fixed
amounts of hashtags and fail to deal with newly appeared
hashtags. We also constructed a large data collection re-
trieved from live microblog services to evaluate the effec-
tiveness of our model. Experimental results showed that the
proposed method achieves better performance than state-of-
the-art methods which treats the hashtag recommendation
task as a multi-class classification task.
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