

复旦大学计算机科学技术学院 School of Computer Science and Technology, Fudan University

Trends in Information Extraction

Qi Zhang 张奇

Fudan University

Information Extraction

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources.

Information extraction dates back to the late 1970s in the early days of NLP.

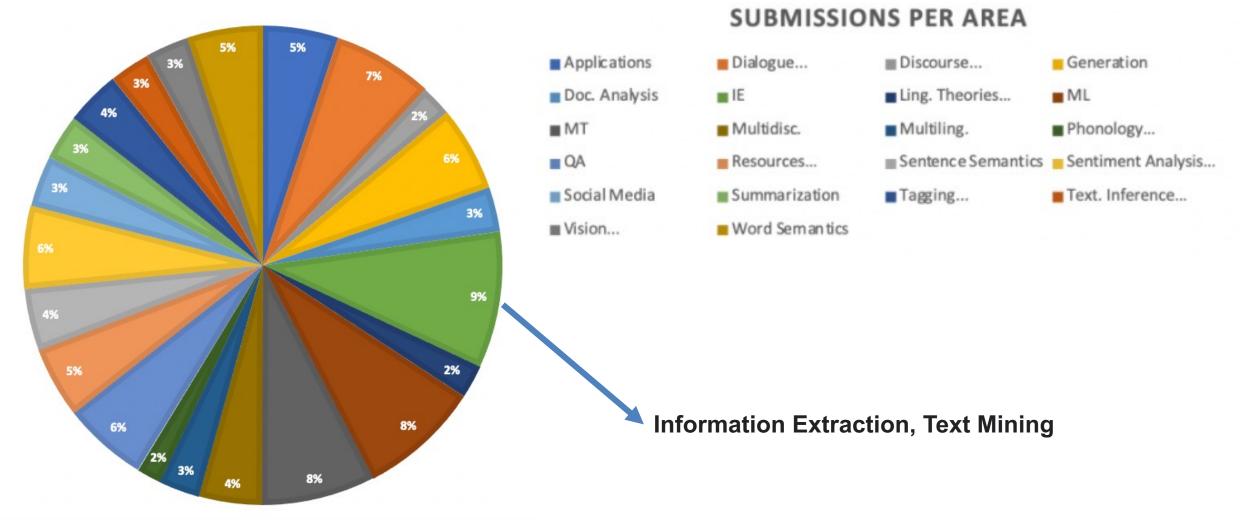
Tasks:

- Named Entity Recognition
- Relationship Extraction
- Coreference Resolution
- Event Extraction
- Table Extraction
- Table Information Extraction

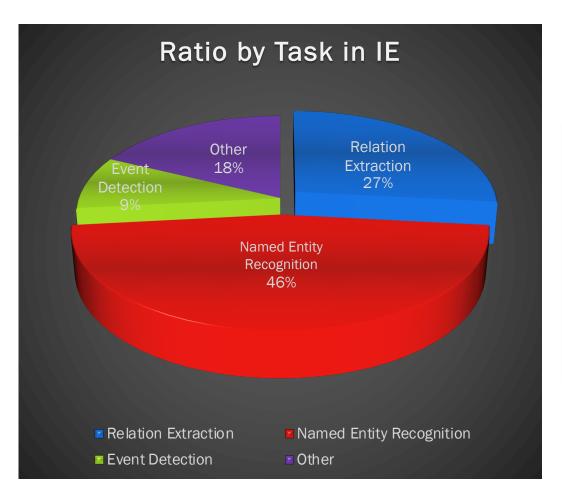
ACL 2020 Statistic



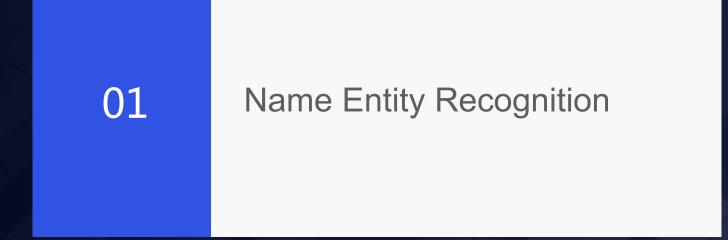
ACL 2019 Statistic



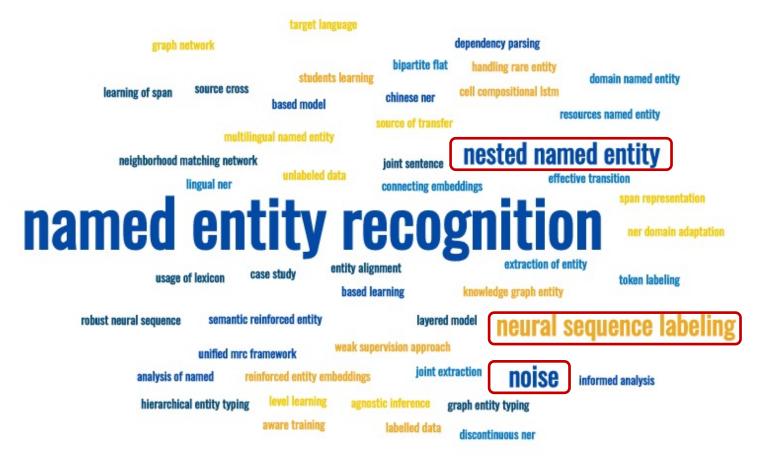
Statistic in Information Extraction



- About 46% of IE papers study Named Entity Recognition
- About 27% of IE papers study Relation Extraction
- About 9% of IE papers study Event Detection
- The others study diverse topics such as aspectopinion mining, argument mining, and so on.

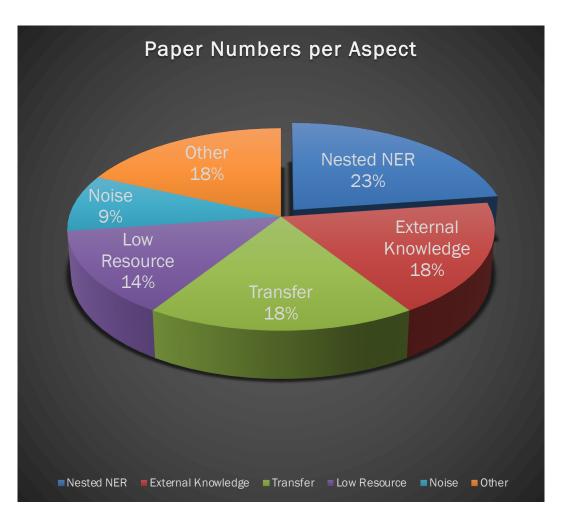


Statistic in Named Entity Recognition



Wordcloud generated from the titles of NER papers

Statistic in Named Entity Recognition



- About 18% of NER papers study crossdomain/cross-lingual NER
- About 18% of NER papers study the introduction of external knowledge
- About 14% of NER papers study distantly supervised NER
- About 9% of NER papers study the dealing with noise in NER

Nested Named Entity Recognition

٠

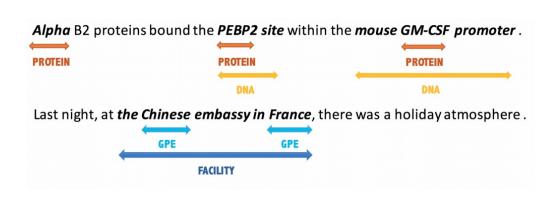


Figure 1: Examples for *nested* entities from GENIA and ACE04 corpora.

- NER \rightarrow Machine Reading Comprehension
 - > An entity type → a question
 - > An annotated entity $\rightarrow x_{start,end}$
 - \succ X \rightarrow Context
 - Dateset \rightarrow (QUESTION, ANSWER, CONTEXT)

Entity	Natural Language Question
Location	Find locations in the text, including non-
	geographical locations, mountain ranges
	and bodies of water.
Facility	Find facilities in the text, including
	buildings, airports, highways and bridges.
Organization	Find organizations in the text, including
•	companies, agencies and institutions.

Li, Xiaoya, et al, 2021, A Unified MRC Framework for Named Entity Recognition Shannon.Al

Table 1: Examples for transforming different entity categories to question queries.

Nested Named Entity Recognition

English GENIA						
Model	Precision	Recall	F1			
Hyper-Graph (Katiyar and Cardie, 2018)	77.7	71.8	74.6			
ARN (Lin et al., 2019a)	75.8	73.9	74.8			
Path-BERT (Shibuya and Hovy, 2019)	78.07	76.45	77.25			
DYGIE (Luan et al., 2019)	-	S. 	76.2			
Seq2seq-BERT (Straková et al., 2019)	-	-	78.31			
BERT-MRC	85.18	81.12	83.75			
			(+5.44)			
English KBP	2017					
Model	Precision	Recall	F1			
KBP17-Best (Ji et al., 2017)	76.2	73.0	72.8			
ARN (Lin et al., 2019a)	77.7	71.8	74.6			
BERT-MRC	82.33	77.61	80.97			
			(+6.37)			

Table 2: Results for nested NER tasks.

Chinese MSRA							
Model	Precision	Recall	F1				
Lattice-LSTM (Zhang and Yang, 2018)	93.57	92.79	93.18				
BERT-Tagger (Devlin et al., 2018)	94.97	94.62	94.80				
Glyce-BERT (Wu et al., 2019)	95.57	95.51	95.54				
BERT-MRC	96.18	95.12	95.75				
			(+0.21)				
Chinese OntoN	otes 4.0						
Model	Precision	Recall	F1				
Lattice-LSTM (Zhang and Yang, 2018)	76.35	71.56	73.88				
BERT-Tagger (Devlin et al., 2018)	78.01	80.35	79.16				
Glyce-BERT (Wu et al., 2019)	81.87	81.40	81.63				
BERT-MRC	82.98	81.25	82.11				
			(+0.48)				

Table 3: Results for *flat* NER tasks.

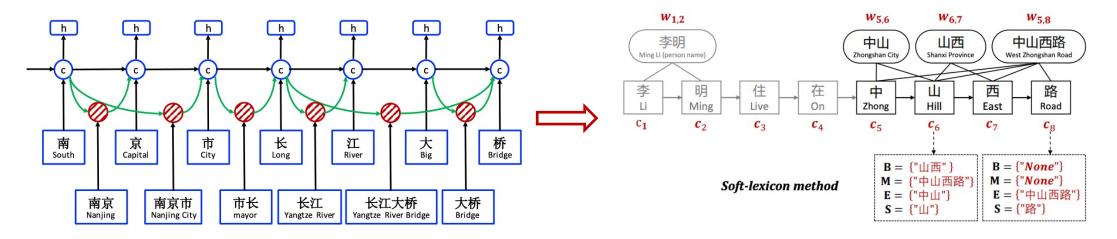
English OntoNotes 5.0					
Model	F1				
BERT-Tagger	89.16				
Position index of labels	88.29 (-0.87)				
Keywords	89.74 (+0.58)				
Wikipedia	89.66 (+0.59)				
Rule-based template filling	89.30 (+0.14)				
Synonyms	89.92 (+0.76)				
Keywords+Synonyms	90.23 (+1.07)				
Annotation guideline notes	91.11 (+1.95)				

Table 5: Results of different types of queries.

Li, Xiaoya, et al, 2020, A Unified MRC Framework for Named Entity Recognition

Named Entity Recognition with External Knowledge

• Simpler lexicons usage in Chinese NER



Lattice LSTM structure.

Zhang, Yue, and Jie Yang. "Chinese NER Using Lattice LSTM."

The SoftLexicon method.

Ma, Ruotian, et al. "Simplify the usage of lexicon in Chinese NER."

Fudan University

Named Entity Recognition with External Knowledge

• Simpler lexicons usage in Chinese NER

Models	OntoNotes	MSRA	Weibo	Resume
Lattice-LSTM	1×	$1 \times$	$1 \times$	$1 \times$
LR-CNN (Gui et al., 2019)	$2.23 \times$	$1.57 \times$	$2.41 \times$	$1.44 \times$
BERT-tagger	$2.56 \times$	$2.55 \times$	$4.45 \times$	$3.12 \times$
BERT + LSTM + CRF	$2.77 \times$	$2.32 \times$	$2.84 \times$	$2.38 \times$
Soft-lexicon (LSTM)	6.15×	5.78×	6.10×	6.13×
Soft-lexicon (LSTM) + bichar	$6.08 \times$	$5.95 \times$	$5.91 \times$	$6.45 \times$
Soft-lexicon (LSTM) + BERT	$2.74 \times$	$2.33 \times$	$2.85 \times$	$2.32 \times$

Table 2: Inference speed (average sentences per second, the larger the better) of our method with LSTM layer compared with Lattice-LSTM, LR-CNN and BERT.

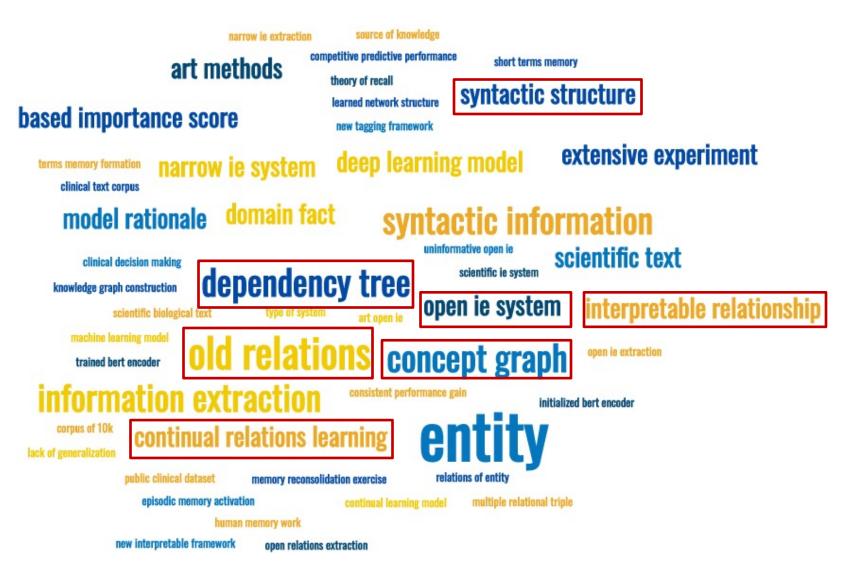
Input	Models	Р	R	F1
	Yang et al., 2016	65.59	71.84	68.57
	Yang et al., 2016* [†]	72.98	80.15	76.40
Gold seg	Che et al., 2013*	77.71	72.51	75.02
Gold seg	Wang et al., 2013*	76.43	72.32	74.32
	Word-based (LSTM)	76.66	63.60	69.52
	+ char + bichar	78.62	73.13	75.77
Auto cog	Word-based (LSTM)	72.84	59.72	65.63
Auto seg	+ char + bichar	73.36	70.12	71.70
	Char-based (LSTM)	68.79	60.35	64.30
No.cog	+ bichar + softword	74.36	69.43	71.89
No seg	+ ExSoftword	69.90	66.46	68.13
	+ bichar + ExSoftword	73.80	71.05	72.40
	Lattice-LSTM	76.35	71.56	73.88
	LR-CNN (Gui et al., 2019)	76.40	72.60	74.45
	Soft-lexicon (LSTM)	77.28	74.07	75.64
	Soft-lexicon (LSTM) + bichar	77.13	75.22	76.16
	BERT-Tagger	76.01	79.96	77.93
	BERT + LSTM + CRF	81,99	81.65	81.82
	Soft-lexicon (LSTM) + BERT	83.41	82.21	82.81

Table 3: Performance on OntoNotes. A model followed by (LSTM) (e.g., Proposed (LSTM)) indicates that its sequence modeling layer is LSTM-based.

Relation Extraction

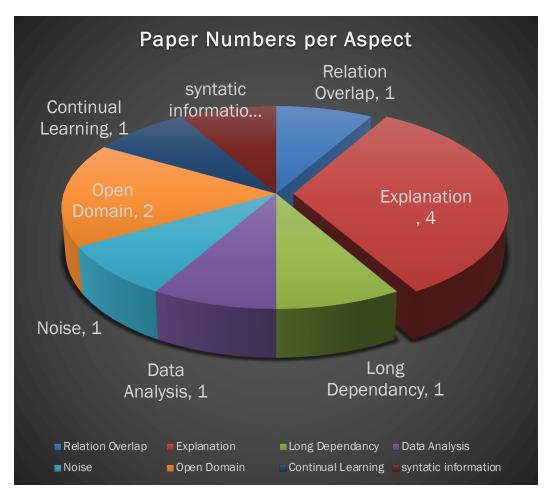
02

Statistic in Relation Extraction



Wordcloud generated from the abstracts of relation extraction papers

Statistic in Relation Extraction



- 4 papers study the interpretability of neural relation extraction
- 2 papers study open-domain relation extraction
- 1 paper studies cross-sentence relation extraction
- 1 paper studies the dealing of noise in NER

Interpretable & Open Domain Relation Extraction

• Learning interpretable relationships from open domain facts.

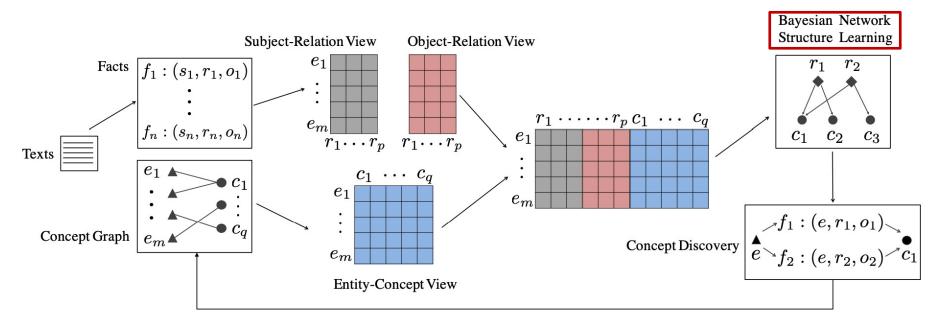


Figure 1: The workflow of learning interpretable relationships from open domain facts for concept discovery. $f_i = (s_i, r_i, o_i)$ represents a fact, where s_i and o_i are both entities, and r_i is a relation. We use e_i to denote an entity and c_i to represent a concept.

Zhang, Jingyuan, et al. "Learning Interpretable Relationships between Entities, Relations and Concepts via Bayesian Structure Learning on Open Domain Facts."

Interpretable & Open Domain Relation Extraction

• Learning interpretable relationships from open domain facts.

Rela	Relation Selection		TF Selection			TFIDF Selection			
Dataset	Method	Accuracy	Precision	Recall	F1-score	Accuracy	Precision	Recall	F1-score
	SVM(s)	58.19% (10)	55.17% <mark>(10)</mark>	87.43% <mark>(6)</mark>	67.65% <mark>(11)</mark>	72.38% (10)	67.28% <mark>(10)</mark>	87.12% (10)	75.93% <mark>(11)</mark>
	BNSL(s)	71.57% <mark>(5)</mark>	67.93% <mark>(5)</mark>	81.70% <mark>(10)</mark>	74.19% <mark>(6)</mark>	86.00% <mark>(2)</mark>	82.24% <mark>(2)</mark>	91.82% <mark>(2)</mark>	86.77% <mark>(2)</mark>
	SVM + BNSL(s)	71.62% <mark>(4)</mark>	68.36% <mark>(4)</mark>	80.48% <mark>(11)</mark>	73.93% <mark>(7)</mark>	82.04% (7)	78.31% <mark>(6)</mark>	88.63% <mark>(7)</mark>	83.15% (7)
	BNSL + SVM(s)	78.46% <mark>(1)</mark>	80.55% <mark>(1)</mark>	75.04% <mark>(12)</mark>	77.70% <mark>(3)</mark>	88.36% <mark>(1)</mark>	86.48% <mark>(1)</mark>	90.94% <mark>(4)</mark>	88.65% (1)
	SVM(o)	55.07% (12)	52.91% <mark>(12)</mark>	92.29% <mark>(1)</mark>	67.26% <mark>(12)</mark>	66.65% (12)	62.64% <mark>(12)</mark>	82.48% (12)	71.21% (12)
English	BNSL(o)	71.14% <mark>(7)</mark>	65.68% <mark>(7)</mark>	88.54% <mark>(5)</mark>	75.42% <mark>(4)</mark>	82.64% <mark>(5)</mark>	78.99% <mark>(5)</mark>	88.95% <mark>(6)</mark>	83.67% <mark>(6)</mark>
Linghish	SVM + BNSL(o)	66.84% <mark>(9)</mark>	61.65% <mark>(9)</mark>	89.07% <mark>(3)</mark>	72.87% <mark>(8)</mark>	78.27% <mark>(9)</mark>	74.79% <mark>(8)</mark>	85.28% (11)	79.70% <mark>(9)</mark>
	BNSL + SVM(o)	77.02% <mark>(2)</mark>	73.10% <mark>(2)</mark>	85.50% <mark>(7)</mark>	78.81% <mark>(1)</mark>	84.16% <mark>(4)</mark>	81.49% <mark>(3)</mark>	88.40% <mark>(9)</mark>	84.80% <mark>(4)</mark>
	SVM	57.38% <mark>(11)</mark>	54.36% <mark>(11)</mark>	92.05% <mark>(2)</mark>	68.35% <mark>(10)</mark>	72.15% (11)	66.46% <mark>(11)</mark>	89.45% <mark>(5)</mark>	76.26% (10)
	BNSL	71.26% <mark>(6)</mark>	66.77% <mark>(6)</mark>	84.63% <mark>(9)</mark>	74.65% <mark>(5)</mark>	84.78% <mark>(3)</mark>	80.89% <mark>(4)</mark>	91.09% <mark>(3)</mark>	85.69% <mark>(3)</mark>
	SVM + BNSL	68.31% <mark>(8)</mark>	63.71% <mark>(8)</mark>	85.09% <mark>(8)</mark>	72.86% <mark>(9)</mark>	78.70% <mark>(8)</mark>	73.99% <mark>(9)</mark>	88.50% <mark>(8)</mark>	80.60% <mark>(8)</mark>
	BNSL + SVM	75.84% <mark>(3)</mark>	70.60% <mark>(3)</mark>	88.58% <mark>(4)</mark>	78.57% <mark>(2)</mark>	82.22% <mark>(6)</mark>	76.50% <mark>(7)</mark>	93.03% <mark>(1)</mark>	83.96% <mark>(5)</mark>
	SVM(s)	89.80% <mark>(8)</mark>	86.91% <mark>(8)</mark>	93.73% <mark>(5)</mark>	90.19% <mark>(8)</mark>	74.58% <mark>(8)</mark>	67.98% <mark>(6)</mark>	92.95% <mark>(8)</mark>	78.53% <mark>(8)</mark>
	BNSL(s)	92.23% <mark>(5)</mark>	90.24% <mark>(5)</mark>	94.71% <mark>(1)</mark>	92.42% <mark>(5)</mark>	75.01% <mark>(6)</mark>	67.90% <mark>(8)</mark>	94.88% <mark>(1)</mark>	79.16% <mark>(6)</mark>
	SVM + BNSL(s)	93.31% <mark>(4)</mark>	93.13% <mark>(4)</mark>	93.52% <mark>(8)</mark>	93.32% <mark>(4)</mark>	76.37% <mark>(3)</mark>	69.62% <mark>(3)</mark>	93.55% <mark>(6)</mark>	79.83% <mark>(3)</mark>
	BNSL + SVM(s)	95.56% <mark>(1)</mark>	97.36% <mark>(1)</mark>	93.65% <mark>(7)</mark>	95.47% <mark>(1)</mark>	77.54% <mark>(2)</mark>	70.64% <mark>(2)</mark>	94.27% <mark>(4)</mark>	80.76% <mark>(2)</mark>
	SVM(o)	51.16% (12)	50.71% <mark>(12)</mark>	82.58% <mark>(9)</mark>	62.84% <mark>(10)</mark>	50.55% (12)	50.33% <mark>(12)</mark>	84.65% (10)	63.12% (10)
Chinese	BNSL(o)	51.39% <mark>(10)</mark>	50.96% <mark>(10)</mark>	73.85% <mark>(11)</mark>	60.31% (12)	50.79% (10)	50.55% <mark>(10)</mark>	72.37% (12)	59.53% <mark>(12)</mark>
Chinese	SVM + BNSL(o)	51.33% (11)	50.82% <mark>(11)</mark>	82.41% (10)	62.87% <mark>(9)</mark>	50.66% (11)	50.39% <mark>(11)</mark>	84.73% <mark>(9)</mark>	63.20% <mark>(9)</mark>
	BNSL + SVM(o)	51.72% <mark>(9)</mark>	51.18% <mark>(9)</mark>	74.54% <mark>(12)</mark>	60.69% <mark>(11)</mark>	50.97% <mark>(9)</mark>	50.68% <mark>(9)</mark>	72.98% <mark>(11)</mark>	59.82% (11)
	SVM	90.35% <mark>(7)</mark>	87.69% <mark>(7)</mark>	93.88% <mark>(4)</mark>	90.68% <mark>(7)</mark>	74.68% <mark>(7)</mark>	67.95% <mark>(7)</mark>	93.45% <mark>(7)</mark>	78.68% (7)
	BNSL	92.15% <mark>(6)</mark>	90.16% <mark>(6)</mark>	94.62% <mark>(2)</mark>	92.34% <mark>(6)</mark>	75.12% <mark>(5)</mark>	68.08% <mark>(5)</mark>	94.61% <mark>(2)</mark>	79.18% <mark>(5)</mark>
	SVM + BNSL	93.61% <mark>(3)</mark>	93.55% <mark>(3)</mark>	93.68% <mark>(6)</mark>	93.61% <mark>(3)</mark>	76.33% <mark>(4)</mark>	69.57% <mark>(4)</mark>	93.60% <mark>(5)</mark>	79.82% <mark>(4)</mark>
	BNSL + SVM	95.46% <mark>(2)</mark>	96.59% <mark>(2)</mark>	94.25% <mark>(3)</mark>	95.40% <mark>(2)</mark>	77.68% <mark>(1)</mark>	70.77% <mark>(1)</mark>	94.32% <mark>(3)</mark>	80.87% <mark>(1)</mark>

Dataset		Engl	ish		Chinese			
Method	Accuracy	Precision	Recall	F1-score	Accuracy	Precision	Recall	F1-score
HypeNet	69.64%	75.09%	69.74%	72.31%	76.57%	87.17%	71.22%	78.39%
RNN(sen)	77.18%	80.74%	78.62%	79.67%	71.90%	72.85%	84.35%	78.18%
RNN(e)	67.77%	77.09%	61.62%	68.49%	57.67%	61.19%	79.53%	69.16%
RNN(s)	73.38%	80.35%	70.39%	75.04%	64.93%	64.02%	94.13%	76.21%
RNN(o)	70.95%	79.81%	65.46%	71.93%	64.97%	64.08%	94.01%	76.21%
RNN(f)	70.01%	79.08%	64.25%	70.90%	49.55%	61.23%	42.81%	49.95%
SVM(s)	76.68%	74.82%	88.93%	81.26%	85.06%	90.01%	84.33%	87.07%
SVM(o)	74.81%	72.72%	89.14%	80.10%	51.86%	57.54%	73.87%	64.69%
SVM	77.43%	74.38%	92.00%	82.25%	86.07%	90. 86%	85.22%	87.95%
BNSL(s)	86.03%	82.89%	95.07%	88.56%	87.54%	92.40%	86.21%	89.20%
BNSL(o)	86.22%	84.52%	92.76%	88.45%	49.03%	56.79%	61.10%	58.86%
BNSL	84.79%	81.87%	94.08%	87.55%	87.37%	92.32%	86.00%	89.05%
B + H	91.27%	91.15%	93.75%	92.43%	87.88%	86.01%	95.18%	90.36%

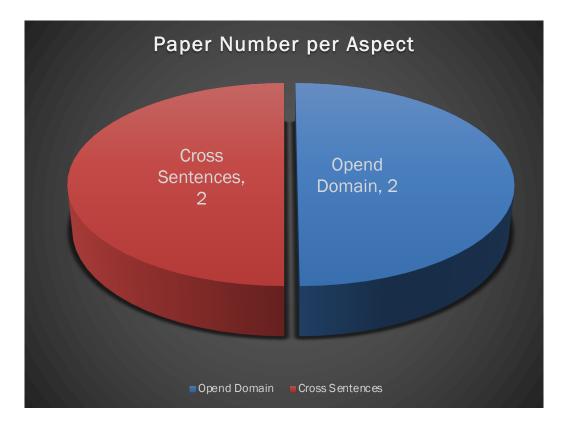
Performance on the co-occurred data. The best results are in bold.

Performance of relation selections on the entire data. The results are reported as "value + (rank)".

Zhang, Jingyuan, et al. "Learning Interpretable Relationships between Entities, Relations and Concepts via Bayesian Structure Learning on Open Domain Facts."

03 Event Detection

Statistic in Event Detection



- 4 event detection papers was analyzed
- 2 papers study cross-sentence detection
- 2 paper study open-domain detection